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 Cognitive functions like language processing, vision, 

navigation, learning…  

 Human brain performance often far superior compared to 

computational models 

  

Motivating Questions 

2 



Acting in Cluttered Environments 
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 We and animals have astonishing abilities of 

perception and action in cluttered environments 

 Biological inspiration:  

 

 How does the human brain 
do the job? 

 

 How can we learn from it for 
robot perception and action? 

 



 

 How is it possible to bridge the large gap between neural 

network processing in the brain and intelligent performance 

of humans?  

 

 How is it possible to build more effective systems which 

integrate neural techniques into intelligent systems? 

 

 

  

Motivating Questions 
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How do Neurons communicate and act? 

100 ms 
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Biological and Artificial Neurons 
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 Symbolic knowledge and action 

understanding   

 

 

 Neural/symbolic knowledge: Connectionist 

learning, crossmodal integration 

 

 

 

 Sensory and neural input from several 

modalities  

 

 

 

NEST: NEural Symbolic Technology 

architecture 
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 Representation should follow some organizational 

principles of the brain 

 

 Midbrain: Superior colliculus plays a crucial role 

• Contains unimodal visual, auditory, somatosensory and 

multisensory neurons 

 

 

1. How do Multiple Modalities in the Brain  

Inform Action Understanding? 
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Multimodal Integration for Action in the Midbrain 

9 Stein, Meredith et al.  



Behavioral Paradigm  

to Study Spatial Coincidence 
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Visual Auditory Response Enhancement 

visual  auditory  

both 
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Towards a Computational Neural Architecture: 

Map Alignment 

Auditory 

Visual 

Association 

12 



Auditory Localization with Spiking Maps  
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MSO: Medial Superior Olive 
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IC: Inferior Colliculus 

 

Chacon, Liu, Magg, Wermter 2012,13  



Integration of visual and auditory Input with 

Population Responses 
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network output 

‘auditory’ input ‘visual’ input 

desired Probability 

Density function 

Bauer, Wermter 2013  



 

 

 

 

 

 

 

 

 

 

 

• Audio-visual virtual reality setup with four projectors 

• 13 speakers with distance 15°  

• iCub humanoid robotic head 

 

Multimodal Human Robot Interaction Lab 

15 



Sound Localization for Action Selection 



 

 

 Superior colliculus plays a crucial role 

• Contains unimodal visual, auditory, somatosensory and 

multisensory neurons 

 

 Cortical areas play a crucial role 

• Contain for instance mirror neurons as smallest entities for 

multimodal cortical integration 

2. How do Multiple Modalities in the Brain  

Inform Action Understanding? 
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Keysers et al. Exp. Brain Res.  

visual 

sound 

vision sound 

motor 

Specific Responses  

of a F5 Audio-Visual Mirror Neuron 
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Association Network for 

Vision, Motor, and Language Representation 
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Language Instructed Behavior 

Reinforcement learning actor-critic approach, Weber Wermter Elshaw et al. 2003, 2004 

   ‘go’                                    ‘pick’                                     ‘lift’ 

Receptive fields as weight representations 

     ‘go’                                          ‘pick’                                  ‘lift’ 
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Integrating Language and Vision with a 

Multiple Timescale Recurrent Neural Network  
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Color-related word 

Arm-related word 

 Core representations in cognition are not   

amodal symbols and structures [Barsalou 2008] 

 Action-perception circuits are necessary for,  

and make an important contribution to,  

semantic processing [Pulvermüller 2006, 2010] 
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Heinrich , Weber, Wermter 2013  



 Small symbolic grammar 

 Transferred to phonetic 

utterances 

• Based on ARPAbet  

 

Verbal Utterance Representation 
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 
 'QUM','EXM','PER','SIL'   

'ZH',,'AA'



 

Sample encoded utterance 



 Shape: Capture salient features around the objects 

• Segmentation with mean shift 

• Object discrimination with 

Canny edge & Suzuki contour 

• Determined center of mass & 

16 distances to salient points 

Visual Perception Representation 
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Network Behaviour and PCA Activity over Time 

25 • Neural activity in Cf layer is similar for same word class 



 Human 3D motion tracking 

• Extraction of spatio-temporal properties from moving targets 

• Use of depth and color information 
 

 Unsupervised novelty detection 

• Neural-statistical architecture  

based on self-organizing maps (SOM) 
 

 Evaluation: 

• Robust to changes in light conditions 

• Highly occluded targets 

 

 

3. Learning, Recognizing and Naming Actions 
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Motion Representation   
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 SOM-based neural architecture 

 

 

 What is a normal action?  

 P-value is smaller than the given threshold, the observation is reported as 

abnormal 

 

Modular Neural Architecture 
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 Training data 

• Depth video sequences from 

monitored home-like environment 

• Frame rate: 30 Hz 

• VGA resolution of 640x480 

• 20 minutes of indoor domestic 

actions 

 Walking 

 Sitting 

 Picking up objects 

 

 SOM networks 

• Input vectors: 34.560 

• Distance: Euclidean 

• Neighborhood function: 

Gaussian 

• Initialization: Random 

• Batch training algorithm 

Experimental Conditions 
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 Achieve complex cognitive task such as fetching object 

after instruction 

 

 Anchoring the visual appearance features in the cognitive 

map for navigation 

 

 Pro-active obstacle avoidance 

 

 Semantics of action is grounded in the navigational map 

 

4. Learning a Cognitive Map for Robot Navigation 
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 Ceiling-mounted Camera & Microphone 

 

Environment 
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Microphone 

Camera 



 Tracking movement of user and robot for plan navigation 

 Growing neural gas algorithm for cognitive map learning 

Integration of Color, Shape, & Movement Cues 
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Anchoring Appearance Features  

at Map Nodes 
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Architecture: Neural Gas and Neural Fields 
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Current state 

Next desired state 

Robot’s particles 

Person’s particles 

Reward value 

 

Current state 

Yan, Weber, Wermter 2012 2013  



 

Building the Map and Storing the  

Features at Neurons of the Map 
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Grasping Bottle and Bringing to Person 
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 Need to understand human language and action 

architectures of the brain 

 Neurocognitive approaches of grounding action 

understanding 

 NEST: Neural Symbolic Technology architecture 

 Computational models need neural, statistical and symbolic 

representations at different levels for integration 

 http://www.informatik.uni-hamburg.de/WTM/ 

Summary and Conclusions 
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 Bauer Weber Wermter IJCAI13 IJCNN12 

 Chacon Liu Magg Wermter IJCNN13 ICANN12 

 Heinrich Weber Wermter ICANN13 ICANN12 

 Parisi Wermter IJCNN13 

 Yan Weber Wermter IJCNN12 

 Elshaw Weber Wermter (Mirrorbot project) 

 Wermter et al. Biomimetic Neural Learning 2005 

 http://www.informatik.uni-hamburg.de/WTM/ 
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