

Conceptualizing verbs, nouns and adjectives

Sinan Kalkan

KOVAN Research Lab.

Dept. of Computer Eng.

Middle East Technical University

Ankara, Turkey

www.kovan.ceng.metu.edu.tr

Who am I?

- Leading KOVAN Research Lab with two other faculty members:
 www.kovan.ceng.metu.edu.tr
 - Erol Şahin
 - Göktürk Üçoluk

Vision

- Border Ownership
- Depth Prediction
- Feature Extraction
- Biometric Identification
- Image Retrieval

Cognitive Robotics

- Conceptualization & Affordances
- Multiple-Levels of Abstraction
- Context

Introduction: Problem

Introduction: Concepts

Rule-Based

Apple = {color = "green" AND shape = "round",...}

Prototype-Based

OUR CHOICE

$$APPLE = \begin{cases} colour & RED, YELLOW \text{ or GREEN respectively} \\ 50\%, 25\% \text{ and } 25\% \text{ of the cases} \\ shape & \bigcirc \\ \dots \end{cases}$$

Introduction: Affordances and Concepts

Concepts

^{*} E.Sahin, M.Cakmak, M.R.Dogar and E.Ugur. To Afford or Not to Afford: A new formalization of Affordances toward Affordance-based Robot Control. Adaptive Behavior, December 2007.

Verb, Noun and Adjective Concepts

Verb Concepts

 Verbs tend to correspond to effect categories rather than single behaviors.

Kalkan et al., accepted. Dag et al., 2010

Noun/Adjective Concepts

- 1. Based on visual appearance.
- 2. Based on what objects afford.

Yuruten et al., 2012; under revision Atil et al., 2010

Experimental Setup

Kinect: 3D Range Data

Features:

- 3D size, 3D position, surface normal histogram curvature histogram, presence

Nouns and adjectives

- **≻**Cup
- **≻**Box
- **≻**Cylinder
- **≻**Ball
- ➤ Short-tall
- **≻**Thin-thick
- ➤ Edgy-round

Verbs as effect labels

- > moved-left (ML)
- > moved-right (MR)
- moved-forward (MF)
- > pulled (P)
- > knocked-down (K)
- > no-change (NC)

Experimental Setup:

Behaviors and Effects

Figure 5. The objects interacted by the robot for learning.

Behaviors

- Push-left (*PL*)
- Push-right (PR)
- Push-forward (*PF*)
- Pull (*PB*)
- Top-grasp (*TG*)
- Side-grasp (SG)

Effects

- > moved-left (ML)
- > moved-right (MR)
- moved-forward (MF)
- pulled (P)
- ➤ knocked-down (K)
- ➤ disappeared (D)
- > no-change (NC)

Verb Concepts: A prototype-based representation

NC: No Change MR: Moved-right ML: Moved-left

MF: Moved-fwd

P: Pulled K: Knocked G: Grasped

D: disappeared

Eff. Cat.	Δ Azimuth	Δ Zenith	Δ Curvature	Δ Shape Index	Δ Position	Δ Orient.	Δ Size	Δ Object
Name	Histograms	Histograms	Histograms	Histograms	(x-y-z)		(x-y-z)	Presence
NC	*000000000	0000000000	0000000000	0000000000	000	0	000	0
	0000000000	0000000*00	00*0000000	000000*000				
MR	*******	*******	0000000000	*****0****	*+*	*	***	0
	******0*0*	*******000	00******	**0*0*0***				
ML	******0000	0**0**0000	0000000000	00*0**0*0*	0-0	*	000	0
	00***0***	**0000*000	0*****0000	**0000*00*				
MF	*******	******000*	0000000000	***0*0****	-00	*	000	0
	********	**000**000	00****0***	**00000***				
P	*******	******000*	0000000000	***0*0****	+00	*	000	0
	********	**000**000	00****0***	**00000***				
K	*0***00000	*000000000	0000000000	0000000000	00-	*	00-	0
	000000**0*	0000000000	000000000*	000000000				
G	0000000000	0000000000	0000000000	0000000000	000	*	000	0
	0000000000	0000000000	0000000000	000000000				
D	0000000000	0000000000	0000000000	0000000000	000	0	000	-
	0000000000	0000000000	0000000000	0000000000				

These prototypes also have mean and standard deviation values of the changes associated with each element.

Comparing conceptualization methods for verbs

Prototype-based view 1:

- Effect prototype-based concepts
- `+', `-', `0', `*'

2. Prototype-based view 2:

Using just the mean & variance of change in features

3. Exemplar-based view:

 Using all interaction data for comparison

Comparison using:

- Recognizing an observed interaction
- Planning

"what did I do?"

	No Change	Moved	Moved	Moved	Pulled	Knocked	Grasped	Disappeared
		Right	Left	Forward				
Concepts with prototypes	390.81	146.24	372.24	389.21	215.56	215.50	392.11	410.31
Concepts with naïve p.	392.16	182.13	386.92	416.43	241.06	219.28	395.04	410.31
Concepts with examplars	237.01	236.89	237.42	237.24	237.42	237.42	237.25	236.84
Concepts with prototypes	731.36	494.18	416.42	340.71	393.76	358.06	738.04	790.41
Concepts with naïve p.	732.98	497.02	417.18	426.71	423.17	428.06	741.11	790.41
Concepts with examplars	789.45	789.08	789.83	789.49	789.83	789.83	789.54	788.84
Concepts with prototypes	925.41	577.51	267.45	328.75	354.85	354.74	928.16	947.51
Concepts with naïve p.	929.37	580.26	291.77	369.75	373.37	359.88	929.94	947.51
Concepts with examplars	946.74	946.42	947.03	946.66	947.03	947.03	947.01	946.21
								1.

Multi-step planning

with effect-prototype-based concepts

PREVIOUS STATE

CURRENT STATE

TARGET STATE

Multi-step planning

with naïve-prototype-based concepts

PREVIOUS STATE

CURRENT STATE

TARGET STATE

Multi-step planning

with exemplar-based concepts

Verb Concepts: Goal Specification

"iCub, do:

Find most similar verb concept:

$$f_{pro}^* = \underset{f_{pro}}{\operatorname{arg min}} d_{EP}(f_{goal}, f_{pro}),$$

Find the behavior producing the verb concept best:

$$b^* = \arg\max_{b} d_{EP}(SVM(e_{o_k}, b), f_{pro}^*),$$

 d_{EP} : Mahalanobis distance

Mid-summary

- There are alternative ways for abstraction over behaviors/actions
- Prototype-based conceptualization based on effects is a good alternative
 - efficient planning
 - condensation
 - easy goal specification
 - Disadvantage: no information about the "how" part (not yet ©).

Adjectives & Nouns based on Affordances & Visual Appearance

%15 Disappearable, %85 Pushable, %10 Knockable, %25 Graspable

Therefore, Short, thick, edgy

Overview

Methodology: the Affordance Vector (V_A)

Probability of	of obta	ining a	an effe	ct from	a beh	avior

Behaviors vs Effects	PR	PL	PF	РВ	TG	SG
Mov. Right	0.93	0.0	0.0	0.01	0.01	0.02
Mov. Left	0.0	0.96	0.0	0.02	0.03	0.15
Mov. Fwd.	0.0	0.0	0.89	0.01	0.01	0.04
Pulled	0.0	0.0	0.0	0.87	0.01	0.02
Disappeared	0.0	0.0	0.0	0.09	0.0	0.03
Grasped	0.0	0.0	0.0	0.0	0.23	0.17
Knocked	0.03	0.02	0.08	0.0	0.07	0.10
No-change	0.04	0.02	0.03	0.0	0.64	0.47

PR: Push Right, **PL**: Push Left, **PF**: Push Forward

PB: Pull, TG: Top Grasp, SG: Side Grasp

48 x 1₂₄

Objects & labels

(e) thin (f) thick ²⁵

Predicted adjectives and nouns of novel objects.

	Object		Adjectives			Nouns	
		$M_A^{\mathcal{D}}$	$M_E^{\mathcal{D}}$	$M_C^{\mathcal{D}}$	$M_A^{\mathcal{N}}$	$M_E^{\mathcal{N}}$	$M_C^{\mathcal{N}}$
O_1	<i>€</i> ₀₀	edgy (54%)	edgy (89%)	edgy (60 %)			
	w .	short (97%)	short (55%)	short (80%)	box	box	box
		thin (59%)	thin (52%)	thin (52%)	(74%)	(97%)	(56%)
O_2		round (77%)	edgy (79%)	round (65%)			
		short (77%)	short (58%)	short (68%)	ball	ball	ball
		thin (89%)	thin 67%	thin (62%)	(83%)	(97%)	(80%)
O_3	8	edgy (63%)	edgy (64%)	edgy (60%)			
		short (94%)	tall~(67%)	$\operatorname{tall}\ (68\%)$	cyl.	cyl.	cyl.
		thin (96%)	thin (84%)	an(80%)	(87%)	(95%)	(60%)
O_4	O_4	round (84%)	round (77%)	round (75%)			
Sim(S)	short (98%)	short (68%)	short (71%)	box	cyl.	cyl.	
		thick (91%)	thin (62%)	thick (51%)	(94%)	(86%)	(52%)
O_5		round (84%)	round (89%)	round (80%)			
		short (97%)	short (67%)	short (66%)	box	box	box
		thick (95%)	thick (58%)	thick (54%)	(89%)	(94%)	(62%)
O_6		edgy (84%)	edgy (79%)	edgy (75%)			
		short (98%)	tall (55%)	short (65%)	cup	box	box
		thin (92%)	thick (62%)	thick (52%)	(89%)	(46%)	(45%)
O_7		edgy (62%)	round (84%)	edgy (60%)			
		short (98%)	short (54%)	short (56%)	box	box	box
	1	thick (78%)	thick (68%)	thick (66%)	(89%)	(93%)	(64%)
O_8		round (72%)	edgy (89%)	round (62%)	, ,		
	-	short (98%)	short (67%)	short (69%)	cup	cup	cup
		thick (79%)	thick (52%)	thick (53%)	(89%)	(98%)	(61%)

 \mathcal{M}_A : Learner from affordance vector

 \mathcal{M}_E : Learner from appearance

 $\mathcal{M}_{\mathcal{C}}$: Learner from Appearance+Affordance

Predicted adjectives and nouns of novel objects from the KIT Dataset (Kasper et al., 2012).

	Object		Adjectives		: :		Nouns	
	J	$M_A^{\mathcal{D}}$	$M_E^{\mathcal{D}}$	$M_C^{\mathcal{D}}$.]	$M_A^{\mathcal{N}}$	$M_E^{\mathcal{N}}$	M_C^N
K_1		round (60%)	edgy (92%)	round (60%)	Ī			
		tall (97%) thick (76%)	tall (100%) thick (96%)	$\begin{array}{c} \text{tall } (80\%) \\ \text{thin } (52\%) \end{array}$		cyl.	cyl.	cyl.
K_2		round (55%)	edgy (90%)	round (62%)	+	(61%)	(98%)	(56%)
		tall (96%)	tall~(98%)	$\mathrm{tall}\;(\hat{82\%})$		cyl.	cyl.	cyl.
		thick (72%)	thick (91%)	thick (54%)		(56%)	(98%)	(58%)
K_3	Parse	edgy (55%) tall (97%)	$\begin{array}{c} \mathrm{edgy} \; (92\%) \\ \mathrm{tall} \; (95\%) \end{array}$	$\frac{\text{edgy } (92\%)}{\text{tall } (79\%)}$		box	box	box
		thin (72%)	thin (93%)	thin (81%)		(58%)	(97%)	(59%)
K_4		round (58%)	edgy $(\%76)$	edgy (82%)	1			
		tall (98%) thick (87%)	tall (100%) thick (86%)	tall (83%) thick (70%)		cup	cup	cup
K_5		round (55%)	edgy (76%)	edgy (80%)	+	(61%)	(96%)	(68%)
11.5		tall (95%)	tall (98%)	tall (80%)		cup	cup	cup
		thick (71%)	$\operatorname{thick}(94\%)$	$ ext{thick }(52\%)$		(56%)	(98%)	(56%)
K_6	And the second	edgy (59%)	$\mathrm{edgy}\;(83\%)$	$\mathrm{edgy}\ (62\%)$	1			
		tall (92%)	tall (96%)	$\mathrm{tall}(78\%)$		box	\mathbf{box}	box
		thick (92%)	thick (90%)	thick (52%)		(56%)	(99%)	(62%)

 \mathcal{M}_A : Learner from affordance vector

 \mathcal{M}_E : Learner from appearance

 $\mathcal{M}_{\mathcal{C}}$: Learner from Appearance+Affordance

Nouns vs. Adjectives

 Relevance of features to the category labels (acquired using ReliefF – Kononenko (1994))

Nouns prefer perceptual features whereas adjectives prefer affordance features.

Nouns vs. adjectives

- Psychology (Fernald, Thorpe, Marchman, 2009; Sandhofer, Smith, 2007):
 - Young children have more difficulty
 learning/interpreting noun modifying adjectives.
- Language (Sasson, 2011):
 - Adjectives are related to changes only in one/two dimensions whereas nouns depend on many dimensions in the feature space.

Conceptualization of Adjectives

Adjective prototypes obtained via learner with full affordance vector (V_{48})

(-): Highly confident that effect may not occur

(+): Highly confident that effect may occur

(*): Not confident about effect's occurrence

Adjective	TG	SG	PR	PL	PF	PB
	abcdefgh	abcdefgh	abcdefgh	abcdefgh	abcdefgh	abcdefgh
Edgy		**_	***-+	-***-+	***-+	*++-+
Round	**_	+	*+*-	-*+*-+	**+-*	**+-*
Short	**-	 -	+**-+	-+**-+	+**-+	+*+-+
Tall	**-	**-	*	-*+*-+	*++-*	*++-*
Thin		**-	*+*-+	-*+*-+	*+*-+	++-+
Thick		**-	***	_***	**+-*	+*+-*

PR: Push Right, PL: Push Left, PF: Push Forward

PB: Pull, TG: Top Grasp, SG: Side Grasp

a: moved right b: moved left

c: moved forward d: pulled

e: knocked f: no change

g: Grasped h: Disappeared

Co-learning nouns and adjectives

Mid-summary

- Nouns & Adjectives:
 - There is a functional/underlying difference between them
- This can shed some light to developmental psychologists & linguists

- Yuruten et al., "Learning Adjectives and Nouns from Affordances on the iCub Humanoid Robot ", SAB, 2012.
- Yuruten et al., "Learning of Adjectives and Nouns from Affordance and Appearance Features", Adaptive Behavior, under revision.
- Dag et al., "Learning Affordances for Categorizing Objects and Their Properties", ICPR, 2010.

Conclusion

- Theories on concepts from Psychology
- Hopefully, I have given some ideas:
 - for new experiments
 - explanations for existing ones
- There is still a lot to do regarding:
 - Verb Concepts
 - Adjectives
 - Nouns

Acknowledgments

Ilkay Atil, Asil Bozcuoglu, Yigit Caliskan, Nilgun Dag, Erol Sahin, Kadir Uyanik, Onur Yuruten.

