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1 Executive Summary

Generally, WP4 of the ACAT project focuses on developing planning and execution mechanisms. In
particular, three of the main objectives of this work package are:

• designing and implementing the plan schemata,

• creating structured reactive controllers for ACAT sequences,

• developing movement descriptions.

All three support the bigger objective of extending the execution engine. We followed these objectives
in the context of a robotic agent which is challenged to perform chemical experiments in a chemistry
laboratory and industrial assembly tasks.
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2 Structured reactive controllers in CHEMLAB scenario

Top-down, the robotic agent is provided with lab protocols which describe in natural language the
chemical experiment to be performed. Using the PRAC system [R6], the robot understands each
protocol’s instruction and infers which actions must be performed and which ADTs must be queried
(by the plans at execution time) for manipulation particularities. Associated with each inferred
action we developed multiple plan schemata. At analysis time PRAC’s probabilistic inference runs
on each instruction and its results fully parametrize one of the plan schemata associated to the
inferred action. Within the context of CHEMLAB scenario we developed plan schemata for actions
like:

• opening / closing containers by unscrewing / screwing their caps

• loading / unloading test tubes into centrifuge

Based on a fully parametrized plan schema the robot is able to identify the most competent structured
reactive controller (plan) to be run in order to perform the manipulations implied by each given
action. At execution time the inferred plan will query the inferred ADT for the missing manipulation
details. If some execution details are missing then the plan will compute them and update them
back into the queried ADT. For example if the unscrewing plan queries the unscrewing ADT for
which trajectory to execute and the unscrewing ADT doesn’t contain this trajectory then the plan
will compute it and update it into the unscrewing ADT.

The collection of all structured reactive controllers is stored into a library (plan library). It
contains action specific plans and action abstract plans. The action specific plans build on top of
action abstract plans. The latter ones are controlling the final robotic motions.

The (currently under review) paper [A1], which is attached to this deliverable, explains in more
details the concepts introduced above.
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3 Structured reactive controllers in IASSES scenario

In IASSES scenario dynamic movement primitives (DMPs) are used for robot control. They can
be directly extracted from action data tables (ADTs) and utilized to encode robot skills, which can
be represented either in Cartesian or in joint space. In their basic form, DMPs consist of a linear
second order attractor system (system of differential equations) with the added nonlinear forcing
term, which is applied to adapt the simple second order attractor dynamics to the specific robot
skill. DMPs have many favourable properties, e. g. they contain open parameters that can be used
for learning without affecting the overall convergence and stability of the system, They can control
timing without requiring an explicit time representation, they are robust against perturbations and
they can be modulated to adapt to different requirements. This last property make them suitable
as reactive controllers, which is the main topic of this section.

For clarity and easier reading we provide the basic equations of the DMP in the following text
as proposed in [R4]. For a single degree of freedom (DOF) denoted by y, in our case one of the
external task-space coordinates, a DMP is defined by the following system of nonlinear differential
equations
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is used in (1), (3) and (4). It is utilized to avoid direct dependency of f on time. Its dynamics is
defined by
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with initial value x(0) = 1. ↵
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is a positive constant.
The weight vector w, composed of weights w

i

, defines the shape of the encoded trajectory.
Ijepeert et al. [R4] describe the learning of the weight vector. Multiple DOFs are realized by
maintaining separate sets of (1) – (4), while a single canonical system given by (5) is used to
synchronize them. For movements defined in task space, we proposed an extension described in the
deliverable D4.1 and the paper attached to this deliverable [R7].

3.1 Dynamic movement primitives as structured reactive controllers

DMPs can be used as reactive controllers because they have several favourable properties and can
adapt to external signals. Adaptations can be either temporal or spatial. In the following we first
provide a list of adaptation to external signals.
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Robustness to perturbations

The dynamic equations of DMPs can be physically interpreted as a spring-damper system of point-
mass, where the nonlinear part represents the accelerations that ensure the tracking of this critically
damped mass of the desired trajectory. The accelerations are often also termed "the forcing term".
In the case of a perturbation, the dynamic system will smoothly approach the original desired
trajectory, with the approach velocity depending on the parameters ↵

z

, �

z

of the DMP.

Robustness to goal change

DMPs also provide a facility to change the final configuration, i. e. the goal of the movement. Sim-
ilarly as in case of perturbations, the DMP dynamic system gracefully adapts the desired trajectory
to the new goal of the movement. In ACAT this property has been demonstrated for Cartesian space
DMPs [R7].

External limit modulation

One of possible spatial modulations includes a simple repulsive force to avoid moving beyond a given
position, either in the task space or in the joint space, depending where the DMP is defined. Such
a repulsive force can be specified by modifying (2) into

⌧ ẏ = z + h(y), (6)

while leaving (1) in the original form. A simple repulsive force to avoid hitting y

L

can be defined as
[R3]
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L

is the known limit.

Obstacle avoidance in DMPs

Obstacle avoidance can very easily be implemented with the introduction of an additional forcing
term, which pushes the trajectory away from the obstacle. In the following we explain how to achieve
obstacle avoidance for a 3-dimensional DMP trajectory in task space.

The 3-D position vector of the 3 DOF discrete dynamical system is encoded by p = [x, y, z]

T .
The objective is to generate a reaching movement to a goal state g = [g1, g2, g3]

T . On the way
to the goal state, an obstacle is positioned at o = [o1, o2, o3]

T and needs to be avoided. A suitable
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t

= [C

t,1, Ct,2, Ct,3]
T for the obstacle avoidance can be formulated as follows:

C

t

= � sig (ko� pk) R ˙

p (⇡ � �) exp (���) , (8)

where

� = arccos

 
(o� p)

T

˙

p

ko� pkk ˙pk

!

, (9)

sig(x) =

1

1 + e

⌘(x�d)
, (10)

R = exp

✓✓
⇡

2

� �

◆
n

◆
, (11)

Page 6 of 9



n =
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�, �, and ⌘ are the scaling factors and d is the distance at which the obstacle should start affecting
the robot’s motion. The coupling term as defined above generates a velocity component that is in a
plane defined by the vectors o�p and ˙

p. It is also orthogonal to the line o�p, which is connecting
the tip of the robot and the obstacle.

We can ensure that the tip of the robot, i.e., the end-effector, avoids the obstacle by adding this
coupling term C

t

, or the new forcing term, to Eq. (1)
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Slow-down feedback for error recovery

As the DMPs are not explicitly dependent on time, but on the phase of the motion, the evolution of
the phase can be used to accelerate or slow-down the motion, resulting in a temporal modulation.
In the following we present the slow-down feedback.

In ACAT we implemented DMP phase stopping in Cartesian space [R7] and applied it to realize
force-based manipulation skills [R1]. For this purpose, the original equation for phase (5) was
replaced with
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where ˜

p and ˜

q are the actual position and orientation (represented as unit quaternion) of the tool
center point, respectively, and p and q the corresponding DMP control outputs.

Note that k˜p � pk + � d(
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q,q) is the trajectory tracking error. In the case of large tracking
errors, the error value k˜p� pk+ � d(

˜

q,q) becomes large which in turn makes the phase change ẋ

small.
Thus the phase evolution is stopped until the robot reduces the tracking error and starts following

the trajectory again.
To recover from errors when executing force-based manipulation skills, we monitor the differ-

ences between the desired forces F
d

and torques M
d

and the currently measured values F and M,
respectively
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where q is the current orientation of the tool center point. In this case the phase stopping criterion
(14) can be replaced with
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and the phase evolution is stopped until the robot has reduced the force-torque error.

DMP sequencing for execution of structured plans

In IASSES scenario we use the concept of semantic event chains [R2] to generate sequences of
action chunks as specified by ADTs. At the control level, it is necessary to smoothly chain these
action chunks. Smooth transitions between consecutive DMPs can be achieved by using mechanisms
provided in Nemec and Ude [R5].
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4 Conclusions

In this deliverable we described mechanisms to implement structured reactive controllers and error
recovery in CHEMLAB and IASSES scenario. In CHEMLAB scenario we developed two main types
of structured reactive controllers: action specific and action abstract structured reactive controllers.
On top of action specific structured reactive controllers we develop the plan schemata which are
parametrized with the results of PRAC’s probabilistic inference. Under action abstract structured
reactive controllers we are able to execute DMPs or different trajectories stored in ACAT’s ADTs.

In IASSES scenario we use DMPs to execute complex plans. DMPs provide many mechanisms
that make them suitable as structured reactive controllers. In ACAT we extended these mechanisms
to dynamic movement primitives in Cartesian space and showed how DMP phase stopping can be
used for error recovery in force-based manipulation skills.
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The Chemist Robot Extracting DNA

Gheorghe Lisca, Daniel Nyga, Ferenc Bálint-Benczédi, Hagen Langer and Michael Beetz

Abstract— Autonomous mobile robots are employed to per-

form increasingly complex tasks which require appropriate

task descriptions, accurate object recognition, and dexterous

object manipulation. In this paper we will address three key

questions: How to obtain appropriate task descriptions from
natural language (NL) instructions, how to choose the control
program to perform a task description, and how to recognize and
manipulate the objects referred by a task description? We describe

an evaluated robotic agent which takes a natural language

instruction stating a step of DNA extraction procedure as a

starting point. The system is able to transform the textual

instruction into an abstract symbolic plan representation. It can

reason about the representation and answer queries about what,

how, and why it is done. The robot selects the most appropriate

control programs and robustly coordinates all manipulations

required by the task description. The execution is based on a

perception sub-system which is able to locate and recognize

the objects and instruments needed in the DNA extraction

procedure.

I. INTRODUCTION

As the area of autonomous robot manipulation gets more
mature it is also getting more important that we better
understand the nature of the underlying information process-
ing mechanism by building complete systems that perform
human-scale manipulation tasks. The importance of research
concerning the building of complete robotic agents can not
be overestimated. We have made impressive progress in
component technologies such as navigation, grasping, and
perception but so far it is not clear how the individual
components have to be pieced together to produce competent
autonomous activity.

Consider, for example, the control of robot motions. We
see many systems that produce and often even learn to
produce very sophisticated motion patterns such as flipping a
pancake or catching a ball in a cup. However, these systems
have no idea of what they are doing. You cannot ask them
about the desired and undesired effects of actions, how the
course of action could be changed in order to avoid some
unwanted side effect, and so on. For example, the result of
pouring a chemical substance into a container might cause
an explosion.

The reason for this situation is that in order to learn
or generate sophisticated motions you have to completely
formulate the problem in a mathematical model that is then
solved in order to generate a control law that constitutes
a desirable mathematical solution. The problems of how
the mathematical models and computational problems can
be generated by a robot tasked with a NL instruction and

Institute for Artificial Intelligence, Department for Computer Science,
University of Bremen, Germany. {lisca, nyga, balintbe,
hlanger, beetz}@cs.uni-bremen.de

Fig. 1: Uni-Bremen’s PR2 pipetting.

looking at a particular scene has not received sufficient
attention. The same holds for the problem of enabling robots
to answer questions about what they are doing, how, why,
what could possibly happen, and so on.

In this paper we describe a robotic agent that is capable
of autonomously conducting chemical experiments with ordi-
nary laboratory equipment based on NL instructions for these
experiments. The actions that the robotic agent is to perform
include taking tubes, opening and closing them, putting them
into a rack, mixing chemical substances through pipetting,
and operating a centrifuge by opening and closing it, loading
and unloading it, and pushing the start button.

The application is interesting because it requires the robot
to perform only a small set of manipulation actions but by
combining these actions in different ways and performing
them with different substances and quantities the robot can
potentially perform thousands of different chemical experi-
ments by reading and executing instructions for experiments.
In addition, large knowledge bases about chemistry that are
available in standardized and machine readable form in the
semantic web enables us to realize knowledgeable robots
with comparatively little effort.

The main contribution of this paper is the realization
of a complete robot agent that can autonomously conduct
(carefully selected) chemical experiments. In this context the
main technical contributions are:

1) The generation of abstractly parameterized plans from
NL instructions, which means that a language instruc-
tion such as “neutralize 250ml hydrochloric acid” is
translated into an abstractly parameterized action de-
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Fig. 2: Agent’s Conceptual Architecture

scription
(perform
(an (action

(type pipetting)
(object-acted-on ...)
... ))

which names the plan to be called, namely pipetting, and
assigns each of the formal parameters of the pipetting
plan an abstract symbolic parameter description. To deal
with the incompleteness and ambiguities of NL instruc-
tions the robotic agent employs first-order probabilistic
reasoning to carry out this interpretation step.

2) A knowledge-enabled perception component that is able
to recognize symbolically described objects such as “the
pipette containing the acid substance” or “the lid of the
tube in the rack” and localize them accurately enough
to allow for high precision manipulation tasks such as
putting a tip on the pipette.

3) The perceptually grounded execution of abstractly pa-
rameterized plans that takes abstract descriptions of
objects, locations, and actions and translates them into
specific numeric parameters such as the 6D pose of the
pipette for releasing the content of the pipette.

4) The acquisition and the reasoning about episodic mem-
ories of chemical experiment activities that enable the
robotic agent to answer queries about what it did in the
episode, how, why, what happened, etc.

The robotic agent was shown in a public demonstration
(see youtube video1 ), in which it participated in the Ocean
Sampling Day.

The remainder of this paper is structured in the following
way: Section II will present an overview of our system. How
does NL understanding happen will be detailed in Section III.
Section V will explain the first symbolic representation of an
instruction. In Section V-A the reasoning mechanism which
separates the symbolic task descriptions in more specific
symbolic descriptions for action, object and location, will be
presented. How are the specific descriptions used at runtime

1 https://www.youtube.com/watch?v=vBZ-Vm5nvBs

will be explained in Section V-B. The experiments and
drawn conclusions will be summarized in the sections VI
respectively VIII.

II. CONCEPTUAL ARCHITECTURE OF THE ROBOTIC
AGENT

From describing the DNA Extraction Procedure and
Pipette Usage through NL instructions to having the robot
reactively pipetting: which are the key steps an intelligent
robot has to go trough in order to parametrize its control
programs from NL? Figure 2. The first step is to understand
the NL instructions which task him.

The two sets of NL instructions for neutralization and
pipette usage are parsed using Stanford parser [1] and for
each instruction word the identified syntactic role is stored
into a probabilistic first order relational database. Using
wordnet [2] for each word it’s meaning is identified. Based
on the meanings and syntactic roles of instruction’s words,
the action cores for pipetting, aspirating and dispensing
which match the best given instructions are identified. The
matching process tries to associate action roles to instruc-
tion’s words. The roles of action core’s which don’t have
an instruction word associated with them, will be used to
infer instruction’s implicit words which are missing from
instruction’s text. aspirating and dispensing involve the in-
strument pipette which doesn’t explicitly appear in Pipette
Usage instructions’ text.

Each action core has a Plan Schema, detailed in Section
V, associated with it. A plan schema groups into a tuple the
action verb and the action roles from the same action core.
The tuple can be regarded as an abstract description of an
action. Defined in this way, a plan schema is fully parame-
terizable by its associated action core. A fully parametrized
plan schema is a plan schema for which all its action roles
were replace by instruction’s specific entities.

In the first phase of the third step, from previously
obtained fully parametrized plan schema, the Reasoning
Mechanism, detailed in Section V-A, extracts the symbolic
descriptions of objects, locations and actions. We call these
symbolic descriptions: designators. In the second phase of
this step, from the freshly extracted action designator, the
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reasoning mechanism infers which control program is the
most competent for performing the manipulations required
by the action description. We call the control program simply
plan and the entire collection of control programs Plan
Library.

In the fourth step, from the plan library, the Reactive
Execution Engine, detailed in Section V-B, retrieves the
plan inferred by the reasoning mechanism. The plan gets
the previously extracted object and location designators as
parameters and runs as a normal program. At plan’s runtime
the reactive execution engine triggers the Semantic Logging
[3] module to log plan’s context, goals events and the sensor
data which influenced robot’s decisions. OpenEASE [4] is the
web-based knowledge service which collects the data about
robot’s runtime experiences and makes it available to other
robots.

III. GENERATING ABSTRACTLY PARAMETERIZED PLANS
FROM NL INSTRUCTIONS

Robotic agents acting in human environments must be
capable of proficiently performing complete jobs in open
environments that they have not been preprogrammed for.
A promising direction towards this skill, which has gained
a lot of attraction in the recent couple of years, is to equip
robots with the capability to acquire new high-level skills
from interpreting NL instructions, which can be found in
abundance on the web. Instruction sheets provide a rough
and sketchy sequence of actions that needs to be executed
in order to accomplish a task.

However, these instructions typically are written by hu-
mans and are intended for human use, so they lack massive
amounts of information about how particular action steps are
to be executed, on which objects they are to be performed,
which utensils to be used and so on. In addition, a specific
action can be achieved in different ways or even must be
achieved in a very particular way, depending on the current
context the action takes place in. As an example, consider
an action like ‘add hydrochloric acid’, which might be taken
from an instruction sheet describing a chemical experiment.
It is neither specified explicitly where to add the acid to,
how much of it, or how to add it. If the amount that is to
be transferred is very small and accurately specified, such
as ‘5 drops’, one may want to choose a pipette for doing
the addition. Conversely, if 100 ml should be transferred,
one should use a measuring cup and pour directly from the
container where the acid is located.

Thus, instructions stated in NL are severely vaguely
formulated, they are ambiguous and underspecified, and
proficiently performing instructions requires a robotic agent
to interpret what is meant by an instruction by understanding
what is given and inferring what is necessary.

Probabilistic Action Cores (PRAC) [5] are action-specific
first-order probabilistic knowledge bases that are able to
interpret instructions formulated in NL and infer the most
probable completion of an action with respect to its abstract,
symbolic parameterizations. More specifically, action cores
can be regarded as abstract patterns of actions and events,

AcidSubstance
Neutralize              75 ml            of  hydrochloric acid.

ActionCore Quantity

acid.n.01

hcl.n.01 milliliter.n.01 (75)

Adding

chemical.n.01 base.n.11

NeutralizationNeutralize

NewMemberAcidSubstance

is-a

AlkalineSubstance

AchievedBy

is-ais-a naoh.n.01

Group

Quantity

is-a

metric_unit.n.01chemical.n.01 is-a

ActionCore Pipetting

Quantity

AchievedBy

Destination

Source

Fig. 4: Exemplary instance of action cores and their action roles
for the ‘neutralization’ example. The colored nodes are given as
evidence, whereas the gray nodes and the role assignments need to
be inferred.

which have a set of formal parameters attached that must all
be known in order to parameterize a robot plan appropriately.
As an example, consider the NL instruction “neutralize 10
ml of hydrochloric acid.” In this example, a ‘Neutralization’
(in a chemical sense) represents an action core, which has
attached to it two action roles, namely an AcidSubstance
and an AlkalineSubstance, which both must be known in
order to perform the neutralization. However, in the original
instruction, the alkali counterpart is not specified. From a
probabilistic point of view, one can query for the most
likely role assignment given what is explicitly stated in the
instruction:

arg max
c

P

0

BB@

action-core(a,Neutralization)
is-a(s, c) AcidSubstance(a, hcl)

is-a(hcl, hcl.n.01)
AlkalineSubstance(a, s)

1

CCA ,

i.e. we are querying for the most probable type c of an entity
s that fills the AlkalineSubstance role, given the action core
Neutralization and the type hcl.n.01 of the AcidSubstance
role. A graphical representation of this action core is given
in Figure 4.

In many cases, it is not sufficient to consider the action
verb as it is stated in an instruction. In our example, the
neutralization is not a directly executable action. It rather
denotes a chemical process that needs to be triggered. A
robot thus needs to be equipped with reasoning capabilities
that allow to infer how a particular action can be achieved.
The neutralization, for instance, can be achieved by adding
the alkaline substance to the acid that is to be neutralized,
and, since the amount of 10 ml is small an accurately
specified, the adding action can be achieved by pipetting
one substance to the other. PRAC uses a dedicated action
role AchievedBy, which enables to reason about which action
can be achieved by some other action, given its abstract
parameterization.

PRACs are implemented as Markov logic networks [6],
a powerful knowledge representation formalism combining
first-order logic and probability theory. A key concept in
PRAC is heavy exploitation of taxonomic knowledge, which
enables to learn PRACs from very sparse data. By exploiting
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Fig. 3: Action Cores: Neutralizing, Pipetting, Aspirating and Dispensing

Fig. 5: Sensory input for the demonstration scenario

the relational structure of concepts in a real-world taxonomy
like the WordNet lexical database, PRAC can perform rea-
soning about concepts that it has not been trained with.

Action cores can be regarded as conceptualizations of
actions that can have an abstract plan schemata attached
to them. In these cases, action roles interface the formal
parameters of the plan.

IV. KNOWLEDGE-ENABLED PERCEPTION OF
EXPERIMENT SETUPS

Detecting the necessary objects for executing the ex-
periment becomes challenging, given the nature of these,
the tasks that need to executed and the noisy input data
(Figure 5). Furthermore it is not enough to detect the labels
of each object, but identifying parts of them is also necessary
(e.g. opening of a bottle or a tube). To address these
challenges we use a knowledge-driven approach, where the
perception system can reason about the objects it perceives
and infer the correct processing step for detecting the parts
of the objects need to be manipulated[7].

This is done through a two step process. First the objects,
their corresponding class lables , visual properties and their
initial pose are detected. Since the objects are represented
in our knowledge-base, based on their class labels we have
access to information that can help further examining them.
In Figure 6 for example the objects rack and bottle have
the property contains, from which we can infer the next
processing step necessary to find the openings of the bottle
or detect if the tubes are closed or open.

We define Prolog rules which are able to deduce parame-
terizations for more general perception algorithms, in order
to detect the necessary parts of the objects. For example:
fitCircle(Object, Radius) :-

category(Object, ’contaier’),
object-part(Object, Opening),

Description of 
objects through 
their properties

name(rack)
shape(box)
color(green)

contains(emtpy tube)

name(pipette)
shape(cylindrical & flat)

color(white)
attribute(has button)

name(bottle)
shape(cylindrical)
color(transparent)

contains(liquid)

name(tips box)
shape(box)

color(blue&white)
location(on the table)
contains(small tubes)

name(trash)
shape(box)
color(red)

contains(objects)
has(cavity)

Fig. 6: Description of the perceived objects

Fig. 7: Circle fitting to find the opening of the containers

geom_primitive(Object, ’cylindrical’),
radius(Opening, Radius).

deduces the radius of a circle that needs to be fit to an object
that is a cylindrical container. The results of the perception
system after executing this query are shown in Figure 7.

V. PERCEPTUALLY GROUNDED EXECUTION OF
ABSTRACTLY PARAMETRIZED PLANS

As we introduced it in Section II, a plan schema is a
template defined over an action verb and the set of action
roles defined within an action core.

(hAction Verbi (hAction Role0i . . . hAction Roleni))
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Code Excerpt 1 Plan Schemata
1: (pipetting
2: (from ((source Pipetting)
3: (chemical (contains (source Pipetting)))
4: (type (is-a (source Pipetting)))))
5: (into ((destination Pipetting)
6: (chemical (contains (destination Pipetting)))
7: (type (is-a (destination Pipetting))))))
8:
9: (aspirating

10: (from ((source Aspirating)
11: (chemical (contains (source Aspirating)))))
12: (amount (quantity Aspirating))
13: (into ((instrument Aspirating))))
14:
15: (screwing
16: (the (mobile-object Screwing))
17: (on (fixed-object Screwing))
18: (using (tool Screwing)))

Code Excerpt 2 Action Designators
1: (pipetting
2: (from Container)
3: (with Instrument)
4: (into Container))
5:
6: (aspirating
7: (from Container)
8: (amount Quantity)
9: (into Instrument))

A fully parameterized plan schema guides the reasoning
mechanism in inferring the most adequate plan which has to
run in order for robot to execute the instructions with which
is tasked. pipetting plan schema, Code Excerpt 1, states that
the pipetting action firstly needs a source which contains
a specific chemical and is of type container and secondly it
needs a destination which contains another specific chemical
and is of type container too. pipetting plan schema starts
to capture what has to be done for the pipetting action.
Once the pipetting action schema is fully parameterized it
specifies exactly with which objects the pipetting action has
to be performed. pipetting fully parameterized plan schema
doesn’t contain how pipetting has to be done. How an action
will be done only the control programs know. screwing fully
parameterized plan schema cannot specify how pressing and
rotating motions must happen. Instead the screw plan knows
it must simultaneously run the press and rotate plans.

A. Reasoning On Fully Parametrized Plan Schemata
From a fully parametrized plan schema our Prolog-based

reasoning mechanism extracts designators for: actions, ob-
jects, and locations. In particular for the fully parametrized
pipetting plan schema the reasoning mechanism extracts the
action designator for pipetting action, the object designators
for pipette and containers and the location designators rela-
tive to them. Code Excerpts 3 - 4. Designators are symbolic
descriptions. Syntactically they have the form of a set of
attribute-value pairs. Semantically they start existing

((hattr0i hval0i) . . . (hattrni hvalni))

as underspecified descriptions for each entity involved by NL
instruction and needs a representation. The semantics of a
designator gives designator’s type. While the control system

Code Excerpt 3 Object Designators
1: (test-tube
2: (type Container)
3: (size 500ml)
4: (contains NaOH)
5: (has-a
6: (cover
7: (type cap)
8: (color blue))))
9:

10: (pipette
11: (type instrument)
12: (capacity 10ml)
13: (has-a button-designator)
14: (has-a effector-designator)

Code Excerpt 4 Location Designators
1: (above
2: test-tube-designator)
3:
4: (inside
5: bottle-NaOH-designator)

is running those symbolic representation grow complex in-
corporating more details about the entities they are referring
to.

Pipetting action designator from Code Excerpt 2 states
what pipetting action needs in terms of classes of entities
- specifically it needs two entities of type Container and
an entity of type Instrument. The difference between the
pipetting plan schema and the pipetting action designator
resides on their different domains of definition. First of them
is defined over the set of action roles and the second is
defined over the set of symbolic features.

Test tube designator Code Excerpt 3 states that it is of type
Container, having a size of 500ml, contains NaOH, and has-a
cover of type cap and color blue. Robot’s Object Recognition
System detailed in Section IV accepts the vague and symbolic
object designators of test tube and returns it enriched with
more perceived details like for example test tube’s 6D pose.

Location designators are defined relative to object des-
ignators. They behave like space quantifiers and refer to
different regions around objects. Above and inside are two
location designators. They are defined relatively to at least
one object. In Code Excerpt 4 they refer the spatial region
above the test tube respectively the spatial region inside the
bottle containing the chemical compound NaOH.

B. Plan Execution

The reasoning mechanism infers from pipetting action
designator that the pipet plan, depicted in Code Excerpt 5,
is the most competent to perform it. The pipet plan takes as
arguments four designators which symbolically describe the
source holding the liquid from which the amount must be
transfered into the destination by using the instrument. Inside
its body, the pipet plan coordinates sequentially another two
plans which aspirate a specific amount of liquid into the
instrument and dispense it into the destination. At its turn
the aspirate plan coordinates other simpler plans which move
an object, press an object part respectively release an object
part. In order to move instrument’s effector (pipette’s tip)
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Code Excerpt 5 Pipetting Plan
1: (def-plan pipet (source instrument amount destination)
2: (seq
3: (aspirate (source instrument amount))
4: (dispense (instrument amount destination))))
5:
6: (def-plan aspirate (source instrument amount)
7: (seq
8: (recognize source)
9: (move (object-part effector instrument)

10: (above source))
11: (recognize (object-part button instrument))
12: (press (object-part button instrument))
13: (move (object-part effector instrument)
14: (inside source))
15: (release (object-part button instrument))
16: (move (object-part effector instrument)
17: (above source))))

the object-part quantifier is used to cast the effector as an
object and give it as actual parameter to the move plan call.
Internally the move plan figures out the relation between
object’s frame to be moved and object’s grasping points.
Taking into account this relation the plan is appropriately
parametrizing the controller to perform the right motions.

1) Plan Language: For coding the pipet plan we used
CRAM Plan Language (CPL) [8] which reimplements and
extends RPL [9]. CPL’s control structures are designed to
allow reasoning about the plan and revising it in case a failure
is detected. Plans implemented in CPL can be more than
a sequence of atomic actions. They can run concurrently,
in loops, they can be synchronized and they benefit of
failure handling mechanism. Reasoning on plans can be done
without a complete understanding of a whole plan because
CPL’s control structures support annotation.

2) Plan Library: Top-down the plan library contains task
abstract but action specific plans. Bottom-up it contains hard-
ware specific plans which communicate with robot’s object
recognition system and controllers via ROS [10] middleware.
pipet, aspirate or screw are just few action specific plans.
recognize, move or rotate are other few hardware specific
plans. Action specific plans build on top of hardware specific
plans.

3) Reactive Execution Engine: At execution time the
pipet plan is run as a normal control program. In the first
phase the reactive execution engine queries the object recog-
nition system, detailed in the next section by sending vague
object designators and receiving them enriched with more
details about recognized objects. In the second phase, before
triggering robot’s controllers, the reactive execution engine
asks the geometric reasoning module [11] to check if the
intended manipulations are feasible. The geometric reasoning
module temporal projects the requested manipulations and
analyzes them. If an issue is detected then the plan gets the
chance to fix it. If the geometric reasoning doesn’t return
any issue then in the fourth phase the cartesian controller
is employed to move robot’s arms and perform the motions
requested. For future experiments we plan to employ either
a motion planner either more flexible controllers [12].

4) Spatial Reasoning: At plan’s runtime within robot’s
specific context, all symbolic location designators must be

converted into numerical values understandable by robot’s
controllers. The geometric reasoning mechanism associates
a three dimensional probability distribution to each loca-
tion designator and draws a sample out of it. For moving
pipette’s tip inside bottle which contains sodium hydroxide,
the geometric reasoning mechanism draws a sample from
the probability distribution describing the volume inside the
bottle. Based on this sample the move plan will parametrize
robot’s arm controllers such that they move pipette’s tip
in the sampled three dimensional value. Besides converting
symbolic descriptions to numerical values the geometric rea-
soning mechanism has other more powerful functionalities
like asserting if the current manipulation of an object will
obstruct future manipulations involving other objects or as-
serting if the current manipulation will leave the environment
into a stable state.

5) Cartesian Controller: We focus our experiments on
observing how robots can perform NL instructions, more
precisely on bridging NL understanding with robot’s control
programs. In order to move robot’s arms, for a moment, we
chose the simplest approach of using a inverse kinematics
on top of a joint controller. For future experiments we are
integrating a more flexible controller which uses defined
constraints over a set of features.

6) Semantic Logging: When running a given plan the
reactive execution engine signals a multitude of execution
context characteristics like: plan’s goals, the relations be-
tween the plan being run and the other sub-plans called by
it or pieces of sensor data which influenced robot’s decisions
[3]. All descriptions are synchronized based on a time stamp.

7) OpenEASE: collects all descriptions generated by the
semantic logging module and makes them available to other
robots [4]. OpenEASE is equiped with inference tools which
allow reasoning on this data and answering queries regarding
to what did the robot see, why, how, did the robot behaved.

VI. EVALUATION

Our robot took part in Ocean Sampling Day [13] an
event organized with the aim of indexing all DNAs from
planetary ocean. Ideally it should have performed the entire
procedure of DNA extraction on the samples collected within
this event, but because of procedure’s size we had to limit
our experiments to just few steps. For testing the pipeline
proposed in Section II, from DNA Extraction Procedure
we selected the neutralization instruction and from Pipette
Usage we selected the two instructions for pipetting an
amount of liquid, all of them stated in NL. PRAC system
successfully attached an action role to each instruction word
and inferred that the pipetting plan schema is the most
appropriate to be parametrized with the specific details com-
ing from instructions’ words. The Prolog-based reasoning
mechanism successfully extracted the symbolic descriptions
of pipetting action, for the containers involved and the neces-
sarily instrument and inferred that the pipet plan is the most
competent to perform the pipetting action. When running
the reasoning mechanism on the extracted pipetting action
designator only the pipetting plan is identified as the most
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appropriate for performing the pipetting action. In future
experiments we want to test whether the reasoning mech-
anism is able to infer an ensemble of plans which combined
will should perform given action designator, be it pipetting.
When executing the pipetting plan, object recognition system
successfully recognized all objects involved based only on
their symbolic description Figure 6. For representing the
type of knowledge the robot needs in order to press pipette’s
button such that right amount of liquid is released we decided
to use the KnowRob [14] knowledge processing system for
our future experiments. The cartesian controller behaved well
for simple manipulations but we expect it to be overtaken in
our future experiments.

VII. RELATED WORK

The system proposed in [15] probabilistically maps NL
instructions into a set of robot primary actions and obtains
the sequence of manipulations from planning in this set.
The system [16] turns NL commands into a more structured
representation and learns a probabilistic graphical model to
associate the structured representation to a plan inferred
from the set of groundings: objects, locations, actions. For
training the probabilistic model people are shown a task
happening inside a simulator and are asked to state in NL
commands which correspond to task’s requirements. The
system described in [17] obtained very promising results by
building, at learning time. a conditional random field over the
set of NL commands and using it at runtime for minimizing
an energy function over new commands. So far these systems
skipped the problem of understanding NL instructions and
focused more on correctly associating NL instructions to
robotic primitive actions.

Our approach is very similar with [18] where the two
robots read instructions from web, turn them into executable
plans such that at runtime they collaborate in making a
pancake.

If we shortly look at chemical experiments from the
perspective of autonomously designing and testing hypothe-
ses respectively interpreting the obtained results, Adam, the
robot scientist [19] obtained remarkable results. Now looking
at how the results of chemical experiments are recorded
on Electronic Laboratory Notebooks [20] and how easy are
they shared through Chemical Semantic Web we believe
autonomous mobile robots are capable of using these results
and produce new ones.

VIII. CONCLUSIONS

In this paper we present the control system of an intel-
ligent autonomous robot which is able to understand NL
instructions and infer and run the most competent control
program for performing them. For each instruction the NL
Processing System successfully inferred the implicit knowl-
edge and assembled reach instruction representation. From
this representation the reasoning mechanism extracted sym-
bolic descriptions for action, objects, locations and the most
competent control programs to coordinate robot’s required
motions. The experiments we made suggested us that the

reasoning mechanism is capable of inferring more than one
best control program but instead it is capable of inferring
how to combine more control programs into more competent
one. The results of these experiments will be published in
a future paper. When the inferred control program was run,
the reactive execution engine competently coordinated the
object recognition system, the geometric reasoning system
and robot’s controllers to accurately recognize the required
objects and competently manipulating them. The control
programs contained in the plan library proved to be very
flexible and highly parametrizable. Overall the entire pro-
posed control architecture proved itself to be very scalable.
The used symbolic mechanism is compatible with newly
developed semantic web tools for chemistry. The results of
our future experiments will report how can the chemistry
semantic web be made available to intelligent robots. The
semantic logging mechanism recorded all robot experiences
and OpenEASE, the web-based knowledge base for robots
makes them available to other robots.
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