
Page 1 of 23

Deliverable number: D3.3

Deliverable Title: Generalization by compilation procedures
Type (Internal, Restricted, Public): PU

Authors: Mohamad Javad Aein, Norbert Krüger, Leon Bodenhagen, Ales Ude, Minija
Tamosiunaite, Florentin Wörgötter

Contributing Partners: UGOE, SDU, JSI

Project acronym: ACAT

Project Type: STREP

Project Title: Learning and Execution of Action Categories

Contract Number: 600578

Starting Date: 01-03-2013

Ending Date: 30-04-2016

 Contractual Date of Delivery to the EC: 31-08-2015
 Actual Date of Delivery to the EC: 04-09-2015

Page 2 of 23

Content

1. EXECUTIVE SUMMARY .. 3

2. INTRODUCTION .. 4

3. ADJUSTMENTS OF OBJECT ROLE DEFINITIONS. .. 4

4. ADJUSTMENTS OF ADTS .. 6

5. ACTION INTERPRETATION FOR GENERALIZATION .. 8

6. MOVEMENT PRIMITIVE-BASED GENERALIZATION .. 10

7. CONCLUSIONS AND FUTURE WORK ... 13

APPENDIX. MOVEMENT PRIMITIVES FOR 22 ACTIONS ... 14

Page 3 of 23

1. Executive summary

This document presents the theoretical background for generalization by compilation procedures
applied in the ACAT project. Essentially, here we are presenting material on which we base
extension of the sub-symbolic compilation procedures presented in D3.2 to a bigger number of
actions, as our reviewers have requested in the reviewers’ report for the year two of the Project.

In the current deliverable we are providing only the theoretical background, while actual
demonstration of the generalization by compilation will be provided at the end of the year three,
together with the final demonstrators.

We explain our changes in object role nomenclature required for the expansion of the action set
and introduce Action Data Table (ADT) extensions required for the generalization we are
presenting here. In total 22 actions are analyzed and the possibilities for information re-use
between those actions (i.e. generalization) are indicated.

Page 4 of 23

2. Introduction

In the deliverable D3.2 and the WP3 report in the PPR of the year two of the project we have
presented our general approach on compilation of new instructions, given the textual ontology
and the library of previous robot execution examples presented in the form of ADTs. We have
illustrated the approach in D3.2 and PPR by a small number of examples (mostly pick and place) of
ADT re-use. The aim of this deliverable is to analyze the extent to which the methods presented
previously can be used for a bigger set of actions for cross compilation and generalization between
them.

Now our set of actions consists of the 22 actions extracted from the two ACAT scenarios,
augmented with some general purpose actions which were not directly indicated in the instruction
sheets provided in deliverable D5.1 but are many times used in table-top operations and might be
frequently required in industrial assembly or chemical laboratory tasks. Note, the nomenclature of
actions used in the two scenarios is not very diverse with pick&place, peg in hole (insert),
screw/unscrew and button press operations prevailing.

In order to introduce new actions we had to adjust object role definitions, originally introduced in
the ACAT term glossary provided in PPR 2, where new definitions are given in Chapter 3.

Now we have expanded the ADTs by including the movement primitives into the ADTs. The
changes are introduced in Chapter 4.

In Chapter 5 we are providing explanations of how to perform action temporal segmentation and
discuss the segment interpretation used in generalization procedures based on several actions.
The entire set of actions with appropriate interpretations is presented in the Appendix of this
document.

In Chapter 6 we are discussing cross-compilation and generalization issues based on action
representations given in chapters 3-5.

Finally, in Chapter 7 we present conclusions and indications for future work. Note, on top of the
cross-compilation and generalization theoretical analysis discussed in this deliverables we will
make actual cross-compilation implementations for the final demo of the ACAT project.

3. Adjustments of object role definitions.

When analyzing an instruction we attribute roles to the objects indicated in the sentence (main
object, primary object, secondary object, etc., see page 13 of the PPR year 2). Adjusted role
definitions are given in Table 1.

Page 5 of 23

Here we have to add new roles “load” and “container” for pouring and pipetting actions, which
were not included into our demonstrators previously. We have slightly re-defined primary and
secondary object, as to increase generalizability. For the concise definition of changes see the
table.

Table 1. Changes on object role definitions

Object ACAT term glossary modified definition
Hand The hand (always present) The object that performs the action. The

object which is free at the beginning and
the end of action. (free means not

touching any other object, except the
tool)(always present)

Tool The entity grasped by the hand to
perform an action instead of the hand

(optional)

Same

Main The object which is first touched by
hand/tool (always present)

Same

Primary The object which is first
touched/untouched

by the main object. (Optional)

The first object which makes a T-->N
transition with the main object and it is

not hand/tool (Optional)

Secondary The object which is second
touched/untouched

by the main object. (Optional)

The first object which makes a N-->T
transition with the main object and it is

not hand/tool (Optional)

Main support The object on which
the main object rests, where this “resting

relation” will not change during the
action.(Optional)

Same

Primary support The object on which
the primary object rests, where this

“resting relation” will not change during
the

action.(Optional)

Same

Secondary support The object on which
the secondary object rests, where this

“resting relation” will not change during
the

action.(Optional)

Same

Tool support The object on which
the tool object rests.(Optional,may need

re-definition)

Same

Load - The object which is not directly touched
by the hand, touches/untouches the main

and untouches/touches another object

Container - The object which touches/untouches the
load

Page 6 of 23

4. Adjustments of ADTs

After experiments performed in year two of the project, we have found that in addition to the two
hierarchical levels of action temporal segmentation previously included in the ADTs: action
primitives and action chunks (see Fig. 1 in D3.2), it is practical to add another finer level of
temporal segmentation which we call “movement primitives” (See Fig. 1A below). Figure 1B, by
means of an example, shows the meaning of the three hierarchical levels: action primitive, action
chunk and the movement primitive. Note that the action chunk level is defined by touching or un-
touching of objects in the scene during the manipulation and thus is defined in an objective way.
Action primitives and movement primitives rely on units of action conventionally used in robotic
systems.

Fig. 1. Three hierarchical levels of ADT action representation and an example based on Pick&Place action.

The movement primitives as such were introduced already in D3.2 but now we have decided to
save them in the ADTs together with the other action information. We consider movement
primitives to be the smallest temporal segments of action with explicit symbolic interpretation.

We use the following movement primitives:

1) arm_move(goal_pose);
2) arm_rotate(quaternion);
3) arm_move_periodic(f);
4) arm_insert(peg_length);
5) arm_excert_force(goal_force);
6) hand_move(goal_angles);
7) hand_grasp;
8) hand_ungrasp.

Page 7 of 23

These or similar movement primitives are used in many robotic systems containing an arm and a
hand thus our movement-primitive-based representations has a certain degree of generality.

The primitives are now added to the ADT for each action chunk. Stating specificity of the
representation: each movement primitive belongs to a specific action chunk and thus movement
primitives are not allowed to cross action chunk boundaries. In each action chunk we now provide
a list of movement primitives with start and end time as well as movement primitive-specific
parameters. The first movement primitive in an action chunk has a start time corresponding to the
start time of the action chunk, while last movement primitive has an end time corresponding to
the end time of the action chunk. Otherwise movement primitives can overlap or be kept
sequential. E.g. the “arm_move” and “hand_grasp” in the action chunk “reach and grasp” can be
executed in a sequence in a “simple” robotic system, however can be executed in an overlapping
manner in a system with advanced grasp implementation.

In addition, movement primitives are parameterized with a small number of parameters. E.g. For
the arm_move movement primitive we indicate the goal pose. For the arm_rotate movement
primitive we indicate the quaternion to indicate rotation angles. For the arm_move_periodic we
indicate the frequency f of the periodic movement. For the arm_excert_force movement primitive
we indicate the goal force. However the hand_move primitive is currently parameterized with the
hand_angles which is not task space description as hand movements are very difficult to describe
in a way that generalizes across platforms.

And excerpt from an ADT with movement primitive description is provided in Fig. 2.

Fig. 2. Excerpt from an action chunk “reach and grasp” (first action chunk for a Pick&Place ADT-action) with
two movement primitives indicated. Note, the start of the first movement primitive is kept together with
the start of the action chunk and the end of the second movement primitive is kept together with the end
of the action chunk.

Page 8 of 23

5. Action interpretation for generalization

In this chapter we will explain our approach to action segmentation and interpretation which we
will further use for generalization procedures. Here we mainly concentrate on temporal action
segmentation (action chunks and movement primitives discussed in Chapter 4 above), as those
segments are the units which then are re-used in generalization procedures.

Interpretation concerns relational readout of the existing ADT information. As ADTs are given in
absolute coordinates, here we are indicating which relational information is important, i.e. which
relations between the objects and TCP need to be kept in ADT re-use.

In Fig. 3 below we show a pick&place action, based on the nomenclature of object roles given in
Table 1 above.

Fig. 3. Phases of touching and un-touching of different objects in a pick&place action. Notations: h- hand, m
– main object, p –primary object, s –secondary object, p.s. – primary support, s.s. – secondary support.

Figure 3 allows us to define a Semantic Event Chain (SEC) for the pick&place action. In the
consecutive panes of the figure it is indicated how touching and un-touching relations change
throughout the action. The corresponding SEC is provided in Table 2 below.

Table 2. Semantic Event Chain for a pick&place action shown in Fig. 3. “T” means relation between the
objects “touching”, “N” means relation between objects non-touching. On the bottom of the table
movement primitives P1, P2, P3 are given required to make a transition to the next SEC state.

SEC columns 1 2 3 4 5

hand, main N T T T N

main, primary T T N N N

main, secondary N N N T T

main, p.s N N N N N

main, s.s N N N N N

movement
primitives

for transition 1->2
(action chunk No 1)

for transition 2->3
(action chunk No 2)

for transition 3->4
(action chunk No 3)

for transition 4->5
(action chunk No 4)

P1 hand_move(pregrasp) arm_move(prim.) arm_move(sec.) hand_ungrasp
P2 arm_move(main) arm_move(sec.)
P3 hand_grasp arm_move(free)

In Table 2 it is indicated how the touching and non-touching relations change during the action (i.e.
the SEC of an action is shown). The action segment that leads from one SEC column to the other
we call an action chunk, as indicated in D3.2. In the last rows of the Table 2 it is indicated which
movement primitives are required to obtain the next SEC state (i.e. which movement primitives

Page 9 of 23

correspond to an action chunk). One or more movement primitives can correspond to one action
chunk.

The arguments given together with the movement primitives in the table (e.g. main, prim. sec.)
show the required interpretation in the existing ADTs. Specifically, they show in relation to which
object, indicated in the ADT, the movement shall be interpreted. This is additional information
which we use for generalization, but which is not directly indicated in the ADT. Note, an ADT is
considered to be “raw” information potentially extractable without manual intervention and
interpretations for re-use of the information come on top.

Continuing with the explanation of the arguments of the movement primitives provided in Table 2:

- arm_move(main) associated to SEC column 1 (action chunk No 1) means that the arm has
to move to the relative pose in respect to main object as given at the end of the first action
chunk in the existing ADT;

- arm_move(prim.) associated to SEC column 2 (action chunk No 2) means that the arm has
to execute a movement with the end pose relative to the primary object as given in the
existing ADT;

- arm_move(sec.) associated to SEC column 3 (action chunk No 3) means that the arm has to
execute a movement with the end poses relative to the secondary object as given in the
existing ADT; an existing ADT will show an approach to the secondary object in this case ;

- arm_move(sec.) associated to SEC column 4 (action chunk No 4) means that the arm has to
execute a movement with the end poses relative to the secondary object as given in the
existing ADT; however differently from the same primitive in SEC column 3, here a retract of
the arm in respect to the secondary object would be indicated in the ADT;

- arm_move(free) associated to SEC column 4 (action chunk No 4) means that the arm has to
execute a movement with the free end pose (no requirements in respect to objects
included in the ADT)

The movement primitive hand_move(pregrasp) notes preparation of the correct pose of a hand for
grasping. Different actions would need different poses of the hand, like e.g. for pushing or
punching or pulling one would need different poses of the hand. Movement primitives hand_grasp
and hand_ungrasp in the current version do not have parameters and are not associated to any
objects, however potentially could be extended with parameters (e.g. grasping force and this
would then depend on the main object).

Here we will show one example of how we define re-use of (generalization on) action segments.
For this here we show another example of an action (shake) including the temporal segmentation
as for the previous pick&place action. The Fig. 3 as well as the semantic event chain (top of Table
2) for the action shake is the same as for the action pick&lace. However, there are differences in
movement primitives for some action chunks (see Table 3 bottom).

Comparing Table 2 and Table 3 one can see that the semantic event chain transitions are the same.
For the action chunks No 1, 2 and 4 also the movement primitive sequences are the same. This
indicates the similarity of the two actions. If the main object is the same (or similar, according to
textual ontology or even according to the shape as given by CAD models), one can re-use the
movement primitives from pick&place (actions cunk No 1) to perform the action shake or vice
versa. If primary object is the same or similar, one can re-use movement primitives from action
chunk No 2. If, in addition, the secondary object is the same or similar movement primitives from
the action chunk No 4 can be re-used. The movement primitive from action chunk No 3

Page 10 of 23

arm_move(sec.) can also be re-used. The movement primitive arm_move_periodic(main) in the
action chunk No 3 action shake means that the frequency and amplitude depend on the main
object. As this movement primitive does no exist in the pick&place action it cannot be re-used
from pick&place. However if the action shake has been recorded on the ADT and the main objects
(i.e. objects which one has to shake) match, then we can re-use amplitude and frequency from the
movement primitive arm_move_periodic in the previous shaking example.

Table 3. Semantic Event Chain for an action shake. “T” means relation between the objects touching, “N”
means relation between objects non-touching. On the bottom of the table movement primitives P1, P2 are
given required to make a transition to the next SEC state.

SEC columns 1 2 3 4 5

hand, main N T T T N

main, primary T T N N N

main, secondary N N N T T

main, p.s N N N N N

main, s.s N N N N N

movement
primitives

for transition 1->2
(action chunk No 1)

for transition 2->3
(action chunk No 2)

for transition 3->4
(action chunk No 3)

for transition 4->5
(action chunk No 4)

P1 hand_move(pregrasp) arm_move(prim.) arm_move_periodic
(main)

hand_ungrasp

P2 arm_move(main) arm_move(sec.) arm_move(sec.)

P3 hand_grasp arm_move(free)

Definition of all 22 actions we are considering here (figures as Fig. 3 and tables as Table 2) are
provided in the Appendix. Chapter 6 shows possibilities for re-use between the actions provided in
the appendix.

6. Movement primitive-based generalization

In Chapter 5 we have shown how we parameterize actions and have shown one example how we
are doing movement primitive re-use (generalization) in different actions. Here we will go through
all 22 actions discussed in this deliverable (see the Appendix) and define the possibilities for
information re-use based on coinciding action chunks and movement primitives provided in the
ADTs. Here we note one more time that re-use is only eligible if appropriate objects (main,
primary, secondary) coincide or are similar (based on textual ontology or shape similarity). Also
one shall consider, that here as in any type of generalization mistakes may happen. We will
consider this issue in more detail at the end of this chapter.

Further we will provide an action list which we are considering in this deliverable as well as in the
final demos on generalization. Action description with appropriate Semantic Event Chains and
movement primitives are given in the Appendix. Some actions are bound to the ACAT scenarios,
but also many actions are of general importance, e.g. pick&place or push are very frequently used

Page 11 of 23

in any human or robot table-top operation. Another example is screwing and unscrewing. You will
need screwing and unscrewing caps on bottles in the chemical laboratory and screwing and
unscrewing screws in industrial assembly and in other scenarios, too.

Note that most of the actions given below are linguistically notated by different verbs. However,
we have included two action groups (corresponding to pick&place and push verbs) where
linguistically actions are notated by the same verb, however contextual details and robotic
execution differ. E.g. we can pick an object (in an action pick&place) and place it on top of some
other object or we can place it to the side of some other object. In these two cases not only
“place” action segment may differ but also grasps and approach directions may differ, too.
Linguistic contexts of the verb will also differ (e.g. “Place a bottle on the plate” vs. “Place a bottle
next to the plate”).

Next we provide an action list:

1. Poke/Press button
2. Push
3. Pull
4. Pick&Place from side to side
5. Pick&Place from top to top
6. Pick&Place from top to side
7. Drop
8. Screw (a cap or a screw)
9. Unscrew (a cap or a screw)
10. Insert (peg in hole)
11. Push apart
12. Push together
13. Push from X to Y
14. Cut
15. Chop
16. Stir
17. Shake
18. Pipette
19. Pour
20. Align (by grasping)
21. Rotate (by grasping an object which has a rotation axis)
22. Punch

Possibilities for action component re-use between actions are presented in Table 4. Possibility of
re-use of some components is marked with a plus signs and possibility of re-use of many
components is marked with a letter “h” (high similarity). One shall use this table as a look-up table
in generalization algorithms.

The table is mainly symmetric with a small amount of exceptions. Exceptions arise due to some
actions requiring more specific components than the others. E.g. grasp of a spoon for stirring can
be transferred to grasping of a spoon for dropping it in a bowl with dirty tools. However opposite
transfer is not possible, as one cannot be sure that for dropping of a spoon someone used the
same grasp which is appropriate for stirring.

Page 12 of 23

There are several very specific actions, like e.g. pipetting or pouring which are not similar to other
actions and cross-compilation is not possible. However, there are groups of actions e.g. one
consisting of pick&place, drop, shake, insert, screw/unscrew, another consisting or poking,
varieties of pushing, punching, where re-use of movement primitives can be performed between
different actions.

Table 4. Possibilities for action information re-use. Minus sign means no re-use possibilities. Plus
sign means some components can be re-used. “h” means high potential for re-use (many
components can be re-used).

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
1 h - - - - - - - - + + + - - - - - - - - +
2 h - - - - - - - - + + + - - - - - - - - -
3 - - - - - - - - - - - - - - - - - - - - -
4 - - - + h + - - + - - + - - - h - - + + -
5 - - - + h h + + + - - - - - - h - - h + -
6 - - - h h + + + + - - - - - - + - - h + -
7 - - - + h + + + + - - - - - - + - - - - -
8 - - - - + + + h + - - - - - - + - - + h -
9 - - - - + + + h + - - - - - - + - - + h -
10 - - - + + + + + + - - - - - - + - - + +
11 + + - - - - - - - - + h - - - - - - - - +
12 + + - - - - - - - - + h - - - - - - - - +
13 + + - + - - - - - - h h - - - - - - - - +
14 - - - - + + + - - - - - - + - - - - - - -
15 - - - - + + + - - - - - - + - - - - - - -
16 - - - - + + + - - - - - - - - - - - - - -
17 - - - h h + + + + + - - - - - - - - - - -
18 - - - - - - - - - - - - - - - - - - - - -
19 - - - - - - - - - - - - - - - - - - - - -
20 - - - + h h + + + + - - - - - - - - - + -
21 - - - + + + + h h + - - - - - - - - - + -
22 + + - - - - - - - - + + - - - - - - - - -

Here we formulate some general rules, based on movement primitives, which allow re-use of the
movement primitives between different actions.

1. If the main object is the same in the new instruction and the ADT (or the shapes match), all
the corresponding movement primitives for the first action chunk can be re-used if the
table above allows re-use.

2. If both main and primary objects are the same in the new instruction and the ADT, all the
corresponding movement primitives from the first two chunks can be re-used if the table
allows re-use.

3. If the secondary object is the same in the new instruction and the ADT, all the movement
primitives performed in respect to the secondary object can be re-used if the table allows
re-use (many times it would be the last two action chunks).

These are essentially the same rules as given in PPR 2 for instruction compilation at the sub-
symbolic level. However, now we formulate those rules based on movement primitives (earlier
movement primitive-based formulation was not given). In addition we are indicating in Table 4
between which actions we allow to transfer information.

Page 13 of 23

It is obvious that straightforward re-use, as formulated in those rules will sometimes lead to
mistakes. Here we do not consider any considerable clutter of the scene, where approach and
retract directions would depend on other objects in the scene which are not mentioned in the
instruction as such. In such cases one would need movement planning, possibly using ADT
information for biasing the solution. Also, re-usability heavily depends on the precision required. If
we are manipulating bigger objects, like cups and plates on a table or e.g. rotor caps in IASSES
scenario, quite a large tolerance for precision can be expected. However if one deals with magnets
which have to be inserted into a rotor in the IASSES scenario, much more precision is needed and
e.g. an ADT-derived approach direction if taken from an action of insertion of a magnet of a
different size or different shape might not be re-usable. Thus a user needs to decide how far to
trust the ADTs, and for more accurate operations one needs human in the loop for generalization
based on ADTs. However in less precise service robotics applications, like e.g. cooking scenarios
frequently used as show-cases in robotics the re-use can go much further and with much less
human supervision.

7. Conclusions and future work

In this deliverable we have provided a theoretical framework for action generalization through
compilation procedures in the ACAT project. For 22 actions we provide movement primitive
sequences which can be directly used in action execution. The movement primitive
parameterization is explained in Chapter 4 and in Chapter 5 we explain how we interpret existing
ADT material (at movement primitive level) for re-use. In the Appendix we provide movement
primitive interpretation for each action, i.e., we are indicating in relation to which objects one has
to interpret poses and trajectories when re-using ADT information in the new context.

We have introduced a table which shows when re-use information from one action into another is
allowed and when it is not allowed. In addition we have provided rules based on action chunks
and movement primitives for re-use of information in the cases when the re-use is allowed.

The rules for information re-use between actions will be used for generalization in execution of
new instructions in robotic setup towards the end of the project and demonstrated at the third
ACAT project review meeting.

Page 14 of 23

Appendix. Movement primitives for 22 actions

In this appendix we provide tables indicating action chunk sequences and movement primitive
sequences for the actions analyzed in this deliverable. The actions are illustrated by figures
showing different action phases based on touching and non-touching relations. The tables in the
upper rows show Semantic Even Chains (i.e. how touching and non-touching relations change
throughout the action, SEC) and in the lower rows they show movement primitives which are
needed to induce SEC transitions. The arguments in the brackets at movement primitives show in
respect to which object to interpret the existing ADT material when defining an appropriate
movement primitive in the new situation. For explanation how to interpret those tables see
Chapter 5.

Actions: poke, push, pull, punch, rotate

Fig. A1. Phases of touching and un-touching of different objects in actions: poke, push, pull, punch, rotate.
Notations: h- hand, m – main object, m.s. – main support.

Table A1. Semantic Event Chain and movement primitives for actions poke, push, pull, punch, rotate. “T”
means relation between the objects touching, “N” means relation between objects non-touching. On the
bottom of the table movement primitives P1, P2 are given for each action required to make a transition to
the next SEC state.

SEC columns 1 2 3

hand, main N T N

movement
primitives

for transition 1->2
(action chunk No 1)

for transition 2->3
(action chunk No 2)

Poke, push

P1 hand_move(straighten) arm_move(main)

P2 arm_move(main) arm_move(free)

Pull

P1 hand_move(hook) arm_move(main)

P2 arm_move(main) arm_move(free)

Punch

P1 hand_move(fist) arm_move(main)

P2 arm_move(main) arm_move(free)

Page 15 of 23

Rotate

P1 hand_move(pregrasp) arm_rotate

P2 arm_move(main) hand_ungrasp

P3 hand_grasp arm_move(main)

P4 arm_move(free)

Action: pick&place from side to side

Fig. A2. Phases of touching and un-touching of different objects in action pick&place from side to side.
Notations: h- hand, m – main object, p – primary object, s –secondary object, p.s. – primary support, s.s.
– secondary support.

Table A2. Semantic Event Chain and movement primitives for action pick&place from side to side. “T”
means relation between the objects touching, “N” means relation between objects non-touching. On the
bottom of the table movement primitives P1, P2, P3 are given for each action chunk required to make a
transition to the next SEC state.

SEC columns 1 2 3 4 5

hand, main N T T T N

main, primary T T N N N

main, secondary N N N T T

main, p.s T T N N N

main, s.s N N N T T

movement
primitives

for transition 1->2
(action chunk No 1)

for transition 2->3
(action chunk No 2)

for transition 3->4
(action chunk No 3)

for transition 4->5
(action chunk No 4)

P1 hand_move(pregrasp) arm_move(prim.) arm_move(sec.) hand_ungrasp

P2 arm_move(main) arm_move(sec.)

P3 hand_grasp arm_move(free)

Page 16 of 23

Action: pick&place from top to top, screw, unscrew

Fig. A3. Phases of touching and un-touching of different objects in action pick&place from top to top, screw,
unscrew, insert. Notations: h- hand, m – main object, p – primary object, s –secondary object, p.s. – primary
support, s.s. – secondary support.

Table A3. Semantic Event Chain and movement primitives for action pick&place from top to top, screw,
unscrew, insert. “T” means relation between the objects touching, “N” means relation between objects
non-touching. On the bottom of the table movement primitives P1, P2, P3 are given for each action chunk.

SEC columns 1 2 3 4 5

hand, main N T T T N

main, primary T T N N N

main, secondary N N N T T

main, p.s N N N N N

main, s.s N N N N N

movement
primitives

for transition 1->2
(action chunk No 1)

for transition 2->3
(action chunk No 2)

for transition 3->4
(action chunk No 3)

for transition 4->5
(action chunk No 4)

pick&place2

P1 hand_move(pregrasp) arm_move(prim.) arm_move(sec.) hand_ungrasp

P2 arm_move(main) arm_move(sec.)

P3 hand_grasp arm_move(free)

Screw

P1 hand_move(pregrasp) arm_move(prim.) arm_move(sec.) hand_move

P2 arm_move(main) hand_ungrasp

P3 hand_grasp arm_move(sec)

P4 arm_move(free)

Unscrew

P1 hand_move(pregrasp) arm_move(prim.) arm_move(sec.) hand_ungrasp

P2 arm_move(main) arm_move(sec.)

P3 hand_grasp arm_move(free)

P4 hand_rotate

Insert

P1 hand_move(pregrasp) arm_move(prim.) arm_move(sec.) arm_insert

P2 arm_move(main) hand_ungrasp

P3 hand_grasp arm_move(sec.)

P4 arm_move(free)

Page 17 of 23

Action: pick&place from top to side

Fig. A4. Phases of touching and un-touching of different objects in action pick&place from top to side.
Notations: h- hand, m – main object, p – primary object, s –secondary object, p.s. – primary support, s.s. –
secondary support.

Table A4. Semantic Event Chain and movement primitives for action pick&place from top to side. “T” means
relation between the objects touching, “N” means relation between objects non-touching. On the bottom
of the table movement primitives P1, P2, P3 are given for each action chunk required to make a transition
to the next SEC state.

SEC columns 1 2 3 4 5

hand, main N T T T N

main, primary T T N N N

main, secondary N N N T T

main, p.s N N N N N

main, s.s N N N T T

movement
primitives

for transition 1->2
(action chunk No 1)

for transition 2->3
(action chunk No 2)

for transition 3->4
(action chunk No 3)

for transition 4->5
(action chunk No 4)

P1 hand_move(pregrasp) arm_move(prim.) arm_move(sec.) hand_ungrasp

P2 arm_move(main) arm_move(sec.)

P3 hand_grasp arm_move(free)

Action: drop

Table A5. Semantic Event Chain and movement primitives for action drop. “T” means relation between the
objects touching, “N” means relation between objects non-touching. On the bottom of the table movement
primitives P1, P2, P3 are given for each action chunk required to make a transition to the next SEC state.

SEC columns 1 2 3 4 5

hand, main N T T N N

main, primary T T N N N

main, secondary N N N N T

main, s.s N N N T T

movement
primitives

for transition 1->2
(action chunk No 1)

for transition 2->3
(action chunk No 2)

for transition 3->4
(action chunk No 3)

for transition 4->5
(action chunk No 4)

P1 hand_move(pregrasp) arm_move(prim.) arm_move(sec.) arm_move(free)

P2 arm_move(main) hand_ungrasp

P3 hand_grasp

Page 18 of 23

Action: push apart

Fig. A5. Phases of touching and un-touching of different objects in action push apart. Notations: h- hand, m
– main object, p – primary object, , m.s. – main support, p.s. – primary support.

Table A6. Semantic Event Chain and movement primitives for action push apart. “T” means relation
between the objects touching, “N” means relation between objects non-touching. On the bottom of the
table movement primitives are given for each action chunk required to make a transition to the next SEC
state. There is only one movement primitive per action chunk in this action.

SEC columns 1 2 3 4

hand, main N T T N

main, primary T T N N

movement
primitives

for transition 1->2
(action chunk No 1)

for transition 2->3
(action chunk No 2)

for transition 3->4
(action chunk No 3)

P1 arm_move(main) arm_move(prim.) arm_move(main)

P2 arm_move(free)

Action: push together

Fig. A6. Phases of touching and un-touching of different objects in action push together. Notations: h- hand,
m – main object, s – secondary object, , m.s. – main support, s.s. – secondary support.

Page 19 of 23

Table A7. Semantic Event Chain and movement primitives for action push together. “T” means relation
between the objects touching, “N” means relation between objects non-touching. On the bottom of the
table movement primitives are given for each action chunk required to make a transition to the next SEC
state. There is only one movement primitive per action chunk in this action.

SEC columns 1 2 3 4

hand, main N T T N

main, secondary N N T T

movement
primitives

for transition 1->2
(action chunk No 1)

for transition 2->3
(action chunk No 2)

for transition 3->4
(action chunk No 3)

P1 arm_move(main) arm_move(sec.) arm_move(sec.)

P2 arm_move(free)

Action: push from primary to secondary

Fig. A7. Phases of touching and un-touching of different objects in action push from primary to secondary.
Notations: h- hand, m – main object, p – primary object, s – secondary object, , m.s. – main support, p.s. –
primary support, s.s. – secondary support.

Table A8. Semantic Event Chain and movement primitives for action push from primary to secondary. “T”
means relation between the objects touching, “N” means relation between objects non-touching. On the
bottom of the table movement primitives are given for each action chunk required to make a transition to
the next SEC state. There is only one movement primitive per action chunk in this action.

SEC columns 1 2 3 4 5

hand, main N T T T N

main, primary T T N N N

main, secondary N N N T T

movement
primitives

for transition 1->2
(action chunk No 1)

for transition 2->3
(action chunk No 2)

for transition 3->4
(action chunk No 3)

for transition 4->5
(action chunk No 4)

P1 arm_move(main) arm_move(prim.) arm_move(sec.) arm_move(sec.)

P2 arm_move(free)

Page 20 of 23

Actions: cut and chop

Fig. A8. Phases of touching and un-touching of different objects in action cut and chop. Notations: h- hand,
m – main object, m.s. – main support. Tool is shown as the shape of the knife. Phases of grasping and
releasing tool are not shown here.

Table A9. Semantic Event Chain and movement primitives for actions cut and chop. “T” means relation
between the objects touching, “N” means relation between objects non-touching. On the bottom of the
table movement primitives are given for each action chunk required to make a transition to the next SEC
state; m.s. means “main support”, t.s. means “tool support”. Grasping and releasing of the tool is not
shown.

SEC columns 1 2 3 4 5

tool, main N T T T N

main, primary A A T N N

movement
primitives

for transition 1->2
(action chunk No 1)

for transition 2->3
(action chunk No 2)

for transition 3->4
(action chunk No 3)

for transition 4->5
(action chunk No 4)

Cut

P1 arm_move(main) arm_move_periodic
(main)

arm_move (primary) arm_move(t.s.)

P2 arm_excert_force

Chop

P1 arm_move(main) arm_move(m.s.) arm_move(primary) arm_move(t.s.)

Action: stir

Fig. A9. Phases of touching and un-touching of different objects in action stir. Notations: h- hand, m – main
object, m.s. – main support. Phases of grasping and releasing tool are not shown here.

Page 21 of 23

Table A10. Semantic Event Chain and movement primitives for action stir. “T” means relation between the
objects touching, “N” means relation between objects non-touching. On the bottom of the table movement
primitives are given for each action chunk required to make a transition to the next SEC state; t.s. means
tool support.

SEC columns 1 2 3 4 5 6 7

hand, tool N T T T T T N

tool, main N N N T N N N

tool, t.s. T T N N N T T

movement
primitives

for transition
1->2

(action chunk
No 1)

for transition
2->3

(action chunk
No 2)

for transition
3->4

(action chunk
No 3)

for transition
4->5

(action
chunk No 4)

for transition
5->6

(action chunk
No 5)

for transition
6->7

(action chunk
No 6)

P1 hand_move
(pregrasp)

arm_move
(tool,main)

arm_move
(main)

arm_move_
periodic
(main)

arm_move
(t.s.)

arm_move
(free)

P2 arm_move
(tool)

 arm_move
(main)

ungrasp

P3 hand_grasp

Action: shake

Fig. A10. Phases of touching and un-touching of different objects in action shake. Notations: h- hand, m –
main object, p – primary object, s –secondary object, p.s. – primary support, s.s. – secondary support.

Table A11. Semantic Event Chain for an action Shake. “T” means relation between the objects touching, “N”
means relation between objects non-touching. On the bottom of the table movement primitives P1, P2 are
given required to make a transition to the next SEC state.

SEC columns 1 2 3 4 5

hand, main N T T T N

main, primary T T N N N

main, secondary N N N T T

main, s.s N N N N N

movement
primitives

for transition 1->2
(action chunk No 1)

for transition 2->3
(action chunk No 2)

for transition 3->4
(action chunk No 3)

for transition 4->5
(action chunk No 4)

P1 hand_move(pregrasp) arm_move(prim.) arm_move_periodic
(main)

hand_ungrasp

P2 arm_move(main) arm_move(sec.) arm_move(sec.)

P3 hand_grasp arm_move(free)

Page 22 of 23

Action: pipette

Fig. A11. Phases of touching and un-touching of different objects in action pipette. Notations: h- hand, m –
main object, p – primary object, s –secondary object, p.s. – primary support, s.s. – secondary support.

Table A12. Semantic Event Chain for an action pipette. “T” means relation between the objects touching,
“N” means relation between objects non-touching. On the bottom of the table movement primitives P1, P2
are given required to make a transition to the next SEC state.

SEC columns 1 2 3 4 5 6 7

hand, main N T T T T T N

main,
primary

T T N N N N N

main,
secondary

N N N T T T T

main, load N N N T T T T

load,
container

T T T T N N N

movement
primitives

transition 1->2
(act. ch. No 1)

transition 2->3
(act. ch. No 2)

transition 3->4
(act. ch. No 3)

transition 4->5
(act. ch. No 4)

transition 5->6 transition 6->7

P1 hand_move
(pregrasp)

arm_move
(prim.)

arm_move
(load)

arm_move
(container)

arm_move
(secondary)

arm_move(sec)

P2 arm_move
(main)

 press_pipette release_pipette arm_move(free)

P3 hand_grasp

Action: pour

Fig. A12. Phases of touching and un-touching of different objects in action pour. Notations: h- hand, m –
main object, p – primary object, s –secondary object, p.s. – primary support, s.s. – secondary support.

Page 23 of 23

Table A13. Semantic Event Chain for an action pour. “T” means relation between the objects touching, “N”
means relation between objects non-touching. On the bottom of the table movement primitives P1, P2 are
given required to make a transition to the next SEC state.

SEC columns 1 2 3 4 5 6 7

hand, main N T T T T T N

main,
primary

T T N N N N N

main,
secondary

N N N N N T T

main, load T T T T N N N

load,
container

N N N T T T T

movement
primitives

transition 1->2
(act. ch. No 1)

transition 2->3
(act. ch. No 2)

transition 3->4
(act. ch. No 3)

transition 4->5
(act. ch. No 4)

transition 5->6 transition 6->7

P1 hand_move
(pregrasp)

arm_move
(prim.)

arm_move
(container)

arm_move
(container)

arm_move
(secondary)

hand_ungrasp

P2 arm_move
(main)

 arm_move
(container)

P3 hand_grasp arm_move(free)

Action: align by grasp

Table A14. Semantic Event Chain and movement primitives for action align by grasp. “T” means relation
between the objects touching, “N” means relation between objects non-touching. On the bottom of the
table movement primitives are given for each action chunk required to make a transition to the next SEC
state. There is only one movement primitive per action chunk in this action.

SEC columns 1 2 3

hand, main N T N

main, primary T T T

movement
primitives

for transition 1->2
(action chunk No 1)

for transition 2->3
(action chunk No 2)

P1 hand_move(pregrasp) arm_rotate(primary)

P2 arm_move(main) hand_ungrasp

P3 hand_grasp arm_move(free)

	1. Executive summary
	2. Introduction
	3. Adjustments of object role definitions.
	4. Adjustments of ADTs
	5. Action interpretation for generalization
	6. Movement primitive-based generalization
	7. Conclusions and future work
	Appendix. Movement primitives for 22 actions

