
Page 1 of 53

Deliverable number: D3.1 (update)

Deliverable Title: Textual completion of instruction sheets (update)

Type (Internal, Restricted, Public): PU

Authors: Daiva Vitkute-Adzgauskiene, Irena Markievicz, Jurgita Kapociute-Dzikiene, Tomas
Krilavicius, Minija Tamosiunaite, Leon Bodenhagen, Dimitris Chrysostomou, Jimmy Alison Rytz,
Hagen Langer, Aleksandar Vorotnjak

Contributing Partners: VMU, UGOE, AAU, SDU, UoB

Project acronym: ACAT

Project Type: STREP

Project Title: Learning and Execution of Action Categories

Contract Number: 600578

Starting Date: 01-03-2013

Ending Date: 28-02-2016

 Contractual Date of Delivery to the EC: N/A – this is an update
 Actual Date of Delivery to the EC: 27-12-2014

Page 2 of 53

Content

1. EXECUTIVE SUMMARY .. 3

2. INTRODUCTION .. 4

3. OVERVIEW OF THE TEXTUAL COMPLETION PROCEDURE .. 5

4. DETAILED METHOD DESCRIPTION .. 7

4.1. PREPROCESSING AND DEPENDENCY PARSING .. 7

4.2. ADVANCED INSTRUCTION TEXT ANALYSIS.. 13

4.3. ACTION ONTOLOGY .. 15

4.4. FILLING IN MISSING INFORMATION WITH KNOWLEDGE FROM ACAT ACTION ONTOLOGY 18

5. TEXTUAL INSTRUCTION COMPLETION EXPERIMENTS FOR ACAT PROJECT SCENARIOS 21

5.1. IASSES SCENARIO .. 22

5.2. CHEMLAB SCENARIO ... 31

6. DISCUSSION .. 39

7. CONCLUSIONS AND FUTURE WORK ... 41

8. REFERENCES ... 42

APPENDICES ... 43

A.1. DOCUMENTATION OF THE ACAT INSTRUCTION COMPLETION (ACAT INSTRUCTION COMPILER)
SOFTWARE... 43

INTRODUCTION .. 43
CONCEPTUAL MODEL .. 43
USER INTERFACE .. 45
EXAMPLES AND SCREENSHOTS .. 46

A.2. SET OF INSTRUCTIONS FOR INSTRUCTION COMPLETION EXPERIMENTS FOR IASSES SCENARIO 48

A.3. SET OF INSTRUCTIONS FOR INSTRUCTION COMPLETION EXPERIMENTS FOR CHEMLAB SCENARIO ... 49

A.4. OBJECTS ROLE DEFINITION IN ACTION DATA TABLES .. 53

Page 3 of 53

1. Executive summary

This document is the updated version of deliverable D3.1, providing exhaustive analysis of textual
completion for CHEMLAB and IASSES instruction sheets.

In the ACAT project we are considering to perform human readable instruction compilation into a
robot executable instruction sequence by transforming the human readable instruction into a
sequence of Action Data Tables (ADTs, the format introduced in the deliverable D2.1).

The processes we are implementing for compilation in the ACAT project consist of the following
steps:

1) Robot executable action sequence definition (i.e., ADT sequence definition);
2) ADT filling with symbolic information from textual resources and ACAT action ontology;
3) ADT filling with sub-symbolic (control level) information based on previous robot

experience (previously filled ADTs);
4) Human validation and error correction of the automatically filled ADTs as well as entering

of the missing information into the ADTs.

Here we present the designed algorithms and related tools for the filling-in of the missing
symbolic information (step 2 from the list above) into ADTs. Other aspects (the other steps) will
be covered by deliverables D3.2 as well as in system demonstrators (D5.4 and D5.7).

The algorithms presented here cover both, parsing of the available instructions and extraction of
missing (or more specific) symbolic information for each action and its corresponding environment
by querying the ACAT action ontology. The information is filled into an empty ADT template thus
creating an ADT blueprint required for further compilation steps.

Page 4 of 53

2. Introduction

The process of textual completion of instruction sheets is aimed at creating an instruction
representation that provides textual (symbolic) information required for the planning and
execution process on a robot. Specifically, we are considering here the process of converting
natural language instruction into a sequence of Action Data Tables (ADTs, data structure for robot
action data recording and execution in ACAT project, see D2.1 for details). In the textual
completion phase the ADTs are pre-filled with symbolic information (action and object names,
symbolic object properties). Filling of the signal level information into ADTs is not discussed here,
but will be discussed in deliverable D3.2 (Compilation of instructions into action sequencing
protocols.) at month 24.

A simple example of an instruction where textual completion is needed is "take a rotor cap and
place it on the robot platform". Here one needs to replace the pronoun "it" with the object "rotor
cap" such that it is clear that the object which needs placing on the robot platform is the rotor cap.
Such simple re-substitutions might be addressed using "pure" text analytics techniques (specifics
of robotics does not need to be taken into account) and are performed in the "pre-processing"
step of the textual completion procedure discussed in this deliverable.

The other issues on textual completion discussed in this deliverable are tightly related to robotics.
Next we will briefly discuss the link. Not every action word (verb) 1 in the instruction sheet is
directly linked to robotic actions. E.g. consider the verbs "neutralize" or "harvest" (of E.coli), which
cannot be directly linked to robotic actions, against "pick up" or "screw", which can be directly
linked to robotic actions. Let us analyze an instruction from the CHEMLAB scenario: "Harvest the
E.Coli by centrifugation at 6000g for 10 minutes at 4°C". Ignoring the details like speed or duration
of centrifugation for now, first we need to tell which executable robot action sequence would
correspond to the verbal instruction "harvest E.Coli by centrifugation", e.g.: locate centrifuge,
open centrifuge, pick up test tube with E.Coli, place it into centrifuge, etc. It is obvious that the
executable robot action sequence in such a complicated case cannot be extracted without
additional knowledge (e.g. human-provided dictionary for translation of the instructions with
verbs that cannot be directly linked to robotic actions into a sequence of instructions that can be
directly linked to robotic actions). Instead, in this deliverable we will concentrate on instructions,
which are already given at the level of robotic actions (See Appendices A.2-A.3 for actual
instruction sets for the two scenarios which were processed in this deliverable). Systematic
handling of the instructions that are not directly linked to robotic actions will be addressed in year
3 of the project.

1 We use the notion of „action word“ instead of „verb“, to emphasize that action description in the sentence can be
more complex than just an isolated verb: e.g. verbs with prepositions (e.g. „put into“), or more complicated
constructs, like „harvest by centrifugation“. Still, we sometimes use „verb“ in exchange to make the text less confusing
for the reader.

Page 5 of 53

To distinguish at which level (directly linked to robotics action or not) the instruction is given, we
define the action ontology such that action words (verbs) are supplied with appropriate features:
“robotic” and “non-robotic” (introduced into the ontology in a semi-automated way). Thus, textual
completion of instruction sheets presented here takes a sequence of instructions in natural
language, given the action words (verbs) are “robotic”, and transforms it into a sequence of ADTs,
where each ADT, in turn, is a sequence of primitive actions and action chunks; however, these
finer sequencing issues will be discussed in the next deliverable D3.2.

For the purpose of textual completion of instruction sheets, the following actions are repeated for
every instruction in the instruction sheet:

• textual analysis (parsing) of the instruction is done in order to structure the information in
the instruction and to identify the action words (verbs),

• queries are made to ACAT ontology and action word features are identified (robotic or
non-robotics),

• finally detailed object information for each action is filled into the instruction from the
parse data and from the action ontology.

The goal of this document is to describe in detail the main algorithms and corresponding tools for
textual instruction sheet completion as well as the results obtained for the instruction sheets from
two ACAT scenarios: IASSES and CHEMLAB. In the Appendixes we are providing the
Documentation of the ACAT instruction completion software (instruction compiler) as well as the
instruction sheets for the two scenarios that have been used as test-data for this deliverable.

3. Overview of the textual completion procedure

An algorithm for textual completion of instruction sheets and insertion of relevant background
information has been developed. The algorithm is based on the following techniques and
resources:

1. Pre-processing and parsing of instruction texts in order to identify action verbs and related
background structure elements.

a. Semi-manually built restricted dictionary for a topical domain is used for better
parsing quality.

2. SPARQL queries to the corresponding action ontology in order to extract the action
background structure for a specific action, identified in the process of parsing the
instruction sheets.

a. Action ontologies are built for specific topical domains (namely, IASSES and
CHEMLAB) focused on the instruction sheets provided in D5.1 and filled in with
information from Wordnet as well as from domain-specific corpus texts,
accumulated in the ACAT Project (see D1.1).

Page 6 of 53

3. For each action, identified in the instruction sheet matching of the action structure,
extracted from the action ontology, to the instruction parse-tree in order to:

a. Assign semantic roles to the objects, identified in instruction parse-trees;
b. Determine required objects and properties, missing from the instruction text.

Fig.1. Algorithm for filling in the missing information in instruction sheets

4. SPARQL queries to the corresponding action ontology in order to extract possible
candidates for filling of the missing information (missing action background elements) in
the instruction sheet.

Page 7 of 53

5. The resulting action structure, built by combining instruction parsing and action ontology
querying, is stored as an instance in the action ontology of the corresponding domain.

Fig.1 presents a more detailed view of the above described algorithm.

4. Detailed method description
This chapter is dedicated to a detailed description of the methods applied in the main two steps of
textual instruction sheet completion:

1. Preprocessing and dependency parsing (section 4.1).
2. Filling-in missing instruction information with knowledge from ontology (section 4.4).

In addition we are reporting about the project work on advanced instruction text analysis
(extension of Markov Logic Network-based reasoning and causal relation extraction from texts,
section 4.2) as well as presenting properties of the ACAT ontology required for the filling-in of
missing instruction information (section 4.3).

4.1. Preprocessing and dependency parsing
Parsing (synonymously: syntactic analysis) is the process of analyzing a string of symbols, either in
natural language or in computer languages, according to the rules of a formal grammar. In our
case the formal grammar is a dependency grammar (Kübler et al, 2009), where all dependency
relations between syntactic units (words) are either directly or indirectly dependent on a verb as
the structural center (core) of each clause.

Indeed an interpretation of the dependency parsing relations serves as the first step in the
clarification and formalization process of an instruction written in a human language. The
recognized core verb itself matches the action, which a robot has to perform and different types of
dependency relations reveal how objects (and even their features as color, shape, etc.) are
involved into that particular action. E.g. locate is the main verb in a “locate a rotor cap on the
robot platform” clause; the direct object (dobj dependency type) relation between locate and
rotor cap indicates “what to locate”; the prepositional modifier “on” (prep_on dependency type)
between locate and robot platform – “where to locate”.

The instruction parsing system, we are describing in this chapter, was implemented using the
Apache UIMA software framework (Apache UIMA Development Community, 2009). Next we will
give a brief description of each block of this system. The generalized schema for this is presented
in Fig.2.

http://en.wikipedia.org/wiki/String_%28computer_science%29
http://en.wikipedia.org/wiki/Natural_language
http://en.wikipedia.org/wiki/Computer_languages
http://en.wikipedia.org/wiki/Formal_grammar

Page 8 of 53

Fig.2. Generalized block schema of the instruction parsing system

• Read all instructions. Instruction parsing is an iterative process, performed instruction
after instruction. Assuming that each instruction corresponds only to one sentence, we
used the embedded Apache UIMA sentence tokenizer to split all the data into the sentence
units in a given instruction sheet.

<words>
 <word>rotor cap</word>
 <word>robot platform</word>
 <word>bacterial pellet</word>
 <word>bacterial cells</word>
 <word>lysis buffer</word>
 <word>room temperature</word>
 <word>precipitation buffer</word>
 <word>gigaprep lysate filtration cartridge</word>
 <word>equilibration buffer</word>
 <word>DNA binding cartridge</word>
 <word>wash buffer</word>
 <word>elution buffer</word>
 <word>centrifuge bottle</word>
 <word>DNA pellet</word>
 <word>TE buffer</word>
 <word>plasmid DNA</word>
 ...

Fig.3. Snippet from the XML file containing complex objects

Page 9 of 53

• Pre-processing. To avoid some dependency parsing errors, which may be crucial in the

further system compilation steps (when linking with the ontology information, creating
sequences of action categories, etc.), dependency parsing was complemented with the
following capabilities:
- Complex object mapping to pseudo simple. In order to treat complex objects (such as

rotor cap, robot platform or DNA binding cartridge) as indivisible units, they were
replaced with the appropriate pseudo simple objects, i.e. leaving only the last word
instead of the entire collocation (e.g. rotor cap → cap, DNA binding cartridge →
cartridge, etc.). This replacement protects sentences from redundant and often
erroneous dependency relations. An XML file (dictionary, see the snippet in Fig.3)
helped in recognizing complex objects in the text. The dictionary was built semi-
manually extracting all complex objects from predefined instruction sheets for the two
scenarios of ACAT. We kept track both of all mapped complex words and their
positions in the sentence to avoid possible ambiguity between equal pseudo simple
and simple words (e.g. replaced rotor cap → cap). E.g. take a rotor cap and place it on
the robot platform was replaced with take a cap and place it on platform, memorizing
that the 3rd word cap is actually rotor cap and the 8th word platform is robot platform.

- Anaphora resolution problem solving. The anaphora resolution block is responsible
for coping with the pronouns – i.e. indirectly expressed objects or subjects. If the part-
of-speech of a word indicated a personal/possessive pronoun/wh-pronoun2, then it
had to be replaced with the appropriate noun. The noun was determined by searching
back in the sentence for the first dependent with the dependency label indicating
direct/indirect/of preposition object or (passive) nominal/clausal subject. The part-of-
speech tags and the dependency relations were determined with the Stanford parser
(Marneffe and Manning, 2008), incorporated into our instruction parsing system. If
anaphora resolution problem solving involved the previously replaced complex
objects. Thus, information about those replacements was taken into account. E.g. take
a cap and place it on platform was replaced with take a cap and place cap on platform.
Since it refers to the complex object rotor cap (replaced by pseudo cap in the previous
block), this mapping was memorized as well: i.e. 6th word is rotor cap.

2 Wh-pronoun – a pronoun, which is spelt with an initial wh: how, what, which, where, when, who, whom, whose, however,
whatever, etc. Wh-pronouns are either interrogative pronouns or relative pronouns. More information:
http://www.phon.ucl.ac.uk/home/dick/enc2010/frames/frameset.htm

Page 10 of 53

Fig.4. Grey blocks indicate words in the parsed sentence (determiners and punctuation marks
are ignored); arrows – dependency relations and their labels; dashed blocks – mapped
information. E.g. place is node’s take dependent, but node’s platform governor; core verb take
is a ROOT node dependent.

<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmlns:cas="http:///uima/cas.ecore" xmlns:xmi="http://www.omg.org/XMI" xmlns:tcas="http:///uima/tcas.ecore"
xmlns:annotation="http:///org/apache/uima/annotation.ecore" xmi:version="2.0"><cas:NULL xmi:id="0"/>
<cas:Sofa xmi:id="1" sofaNum="1" sofaID="_InitialView" mimeType="text" sofaString="Take a rotor cap and place it on robot platform. Stop conveyor."/>
<tcas:DocumentAnnotation xmi:id="8" sofa="1" begin="0" end="63" language="en"/>
 <annotation:TokenAnnotation xmi:id="13" begin="0" end="4" sStart="true" sEnd="false" Word="Take" Poz="1" POS="VB" dLabel="root" Gov="0"/>
 <annotation:TokenAnnotation xmi:id="24" begin="5" end="6" sStart="false" sEnd="false" Word="a" Poz="2" POS="DT" dLabel="det" Gov="6"/>
 <annotation:TokenAnnotation xmi:id="35" begin="7" end="16" sStart="false" sEnd="false" Word="rotor cap" Poz="3" POS="NN" dLabel="nn"
Gov="6"/>
 <annotation:TokenAnnotation xmi:id="46" begin="17" end="20" sStart="false" sEnd="false" Word="and" Poz="4" POS="CC" dLabel="" Gov="-1"/>
 <annotation:TokenAnnotation xmi:id="57" begin="21" end="26" sStart="false" sEnd="false" Word="place" Poz="5" POS="NN" dLabel="conj_and"
Gov="3"/>
 <annotation:TokenAnnotation xmi:id="68" begin="27" end="29" sStart="false" sEnd="false" Word="rotor cap" Poz="6" POS="NN" dLabel="dobj"
Gov="1"/>
 <annotation:TokenAnnotation xmi:id="79" begin="30" end="32" sStart="false" sEnd="false" Word="on" Poz="7" POS="IN" dLabel="" Gov="-1"/>
 <annotation:TokenAnnotation xmi:id="90" begin="33" end="47" sStart="false" sEnd="false" Word="robot platform" Poz="8" POS="NN"
dLabel="prep_on" Gov="6"/>
 <annotation:TokenAnnotation xmi:id="101" begin="47" end="48" sStart="false" sEnd="true" Word="." Poz="9" POS="." dLabel="" Gov="-1"/>
 <annotation:TokenAnnotation xmi:id="112" begin="49" end="53" sStart="true" sEnd="false" Word="Stop" Poz="1" POS="VB" dLabel="root" Gov="0"/>
 <annotation:TokenAnnotation xmi:id="123" begin="54" end="62" sStart="false" sEnd="false" Word="conveyor" Poz="2" POS="NN" dLabel="dobj"
Gov="1"/>
 <annotation:TokenAnnotation xmi:id="134" begin="62" end="63" sStart="false" sEnd="true" Word="." Poz="3" POS="." dLabel="" Gov="-1"/>
<cas:View sofa="1" members="8 13 24 35 46 57 68 79 90 101 112 123 134"/>
</xmi:XMI>
<annotation:TokenAnnotation xmi:id="13"
 begin="0" ← symbol in the text indicating the beginning of this word
 end="4" ← symbol in the text indicating the end of this word
 sStart="true" ← identifier indicating the beginning of the sentence
 sEnd="false" ← identifier indicating the end of the sentence
 Word="Take" ← analyzed word itself
 Poz="1" ← word position in the sentence
 POS="VB" ← part-of-speech tag
 dLabel="root" ← dependency label
Gov="0" ← governor node position in the text
/>

Fig.5. XML file (above) and explanations for the inserted annotations for the line:
<annotation:TokenAnnotation xmi:id="13" begin="0" end="4" sStart="true" sEnd="false"
Word="Take" Poz="1" POS="VB" dLabel="root" Gov="0"/> (below).

 root

dobj prep_on

conj_and dobj

take

cap place

cap platform

rotor cap

rotor cap robot platform

Page 11 of 53

• Dependency parsing. Dependency parsing was done using the Stanford parser, which may
determine 52 fine grained dependencies, referring to different relations between the
words. We used a collapsed structure which ignores punctuation but involves prepositions
and conjunctions into dependency labels. The example of the parsed sentence “take a
rotor cap and place it on robot platform” is presented in Fig.4.

Post-processing. During this phase information about the mapped objects is restored (considering
their replacements and positions in the sentences) and inserted into the text. Annotations are
stored in an XML file (see the example in Figure 5); a few PrintScreens from CAS Visual Debugger
are presented in Fig.6 – Fig.8 as well.

Fig.6. Detailed annotations for it

Annotations for word it in the text

Page 12 of 53

Fig.7. Detailed annotations for robot platform

Fig.8. Detailed annotations for Stop

There is always a possibility, that POS and dependency parser will return incorrect annotation
results due to ambiguities in the sentence. This can happen when instructions are domain specific
(e.g., chemical or mechanical texts) or have unusual grammatical and syntactic sentence structure
(e.g., imperative mood used for verbs in instructions, which is many times incorrectly interpreted

Page 13 of 53

by the standard Stanford parser). For example, the instruction “Open centrifuge” is annotated as
“Open-NNP centrifuge-VBP” (POS annotation) and relation “nsubj(centrifuge-2, Open-1)”
(dependency parsing results). In this case, “centrifuge” is interpreted as verb form and “open” as a
noun form; the interpretation of the entire sentence by a parser is similar to “Object “Open” is
being centrifuged”.

Wrong parser results affect the overall quality of the compiler. In order to reduce the probability
of parser errors, an additional dictionary in the form of an XML file with “always true” statements
based on instructions in the ACAT instruction sheets has been introduced (see the snippet in
Fig.9). For example, “<statement>centrifuge-NN</statement>” from the dictionary means, that
the word “centrifuge” should always be interpreted as a noun, as “centrifuge” always takes the
role of an object in the instructions we were analyzing. Though this is not a universal solution, it
allows making a shortcut for obtaining bigger percentages of correct parsing results which, in turn,
allows better testing of the other more robotics specific functionalities of the textual instruction
completion sub-system. Alternative solutions are discussed in the “Discussion” section.

Fig.9. Snippet from the XML file containing “always true” statements

4.2. Advanced instruction text analysis
In [Nyga and Beetz 2012] we have proposed PRAC (Probabilistic Robot Action Cores), a novel
approach to the problem of action-specific knowledge processing, representation and acquisition
by autonomous robots performing everyday activities. PRAC is a probabilistic first-order
knowledge base which can be acquired from annotated natural language text. In [Nyga and Beetz
2012] we have also discussed how to address the problems of incompleteness, under-specification
and ambiguity of naturalistic action specifications and how PRAC models can tackle those. In our
recent research PRAC and its underlying formal framework (Markov Logic Networks, MLN) have
been extended into two different directions:

1. In [Nyga and Beetz 2015, submitted] composite likelihood learning (CLL) is described. CLL is a
method for parameter estimation in Markov logic networks, which is a generalization of both
likelihood and pseudo-likelihood learning allowing for a tradeoff between computational costs and
learning accuracy.

2. In [Nyga and Beetz 2014, submitted] we propose an extension of MLNs for enabling efficient
incorporation of concept taxonomies in probabilistic relational models. By allowing evidence
ground atoms taking real-valued degrees of truth, the proposed knowledge representation

Page 14 of 53

formalism is capable of compactly covering semantic similarity of concepts given by a class
taxonomy and, hence, allows efficient reasoning about concepts not contained in the model.
While in classical Markov logic, clique potentials in the ground Markov random field take discrete
binary values that are determined by first-order logical formulas, our approach employs fuzzy logic
semantics for each of the feature functions. This makes the proposed method indeed a
generalization of classical Markov logic being fully compatible with its original semantics.

Another focus of our work in the area of text analysis, annotation, and completion was on the
automated detection and classification of causal relations in texts from the CHEMLAB domain. We
use lexico-syntactic templates for relation extraction, which are in the tradition of Hearst patterns
[Hearst 1992]. The input text is preprocessed and has both standard POS tags and domain-specific
labels (e.g., a label for chemical substances). It also includes syntactic labels for phrase types like
NP etc. For the purpose of linguistic preprocessing (tokenization, POS tagging, and syntactic
analysis) we used components of the Stanford CoreNLP framework [Toutanova 2013]. For some
technical terms of the chemistry domain, especially complicated names of chemical substances
(e.g., rac-N-[(3-methylamino-1-phenyl)propyl]-5-(dimethylamino)-1-naphthale nesulfonamide), it
turned out that the error rate of the preprocessing pipeline could be reduced significantly by
employing a domain-specific semantic annotation tool, the OSCAR4 tagger [Jessop 2011].

Fig. 10. Architecture overview of the causal relation extraction engine.

The basic structure of an annotation pattern is:

<type> /arg1 ... /span ... /arg2 ...

Page 15 of 53

where "type" is the label of the specific causal relation (e.g., CAUSAL_INSTRUMENT_UsedFor})
"/arg1" and "/arg1" are the arguments of the relation, and "/span" is the connective. Our
implementation of the pattern interpreter supports the usual operators for the specification of
regular expressions, e.g. the Kleene star, optionality of subpatterns, and XOR.

The following example pattern matches passive clauses which include the lexical pattern {\em
used as} either with or without an optional adverb:

The nitrogen was used as carrier gas.

The nitrogen was permanently used as carrier gas.

Pattern: [NP] [VBD] [RB]? used as [NP]

Our extraction engine DiscoRelax has been implemented within the UIMA framework [Ferrucci
2004] which has, amongst others, the advantage that it can be easily integrated with other
annotators. The overall architecture is given in Fig 10.

4.3. Action ontology
As instruction textual completion critically depends on the used ontology, here we will briefly
discuss the changes introduced into ACAT ontology as compared to the structures presented in
D2.1 and the Year 1 Project Report.

Initial textual instruction completion experiments were made with the ACAT ontology developed
in the Year 1 of the project (built from texts and based on the structure presented in deliverable
D2.1). After analyzing first experiment results for instruction completion, the following problems
were identified:

- Action ontology is fragmented, information on some typical actions and objects is
missing, for different action words the level of detailed-ness differs.

- Not sufficient space for possible language interpretations when analyzing new
instructions (e.g. using synonyms, etc.).

- Insufficient hierarchical information: e.g. not enough hypernyms and hyponyms,
which could allow ontology class substitution in case of new actions.

- Structural information on object interdependence, e.g. an object being a part of
another object (meronym and holonym information) is rather scarce.

- Ambiguous meaning of some ontology objects and actions.

It was decided to focus the ontology and increase its quality in the following way:

1) Select a focused set of instructions (in written or video format; in the latter case manual
transcriptions of the videos in instruction form are used), which would represent the area
of experiments done both in CHEMLAB and IASSES scenarios.

Page 16 of 53

2) Construct core ontologies from main actions and objects used in those actions from the
selected instruction sets for both CHEMLAB and IASSES scenarios.

3) Expand the core ontologies with relevant information from Wordnet lexical ontology,
adding synset, hypernym and hyponym information.

4) Expand the core ontologies with relevant expert information about “part of relations”.
5) Integrate the core ontologies with earlier built corpus text-based ontologies.

For this reason, the following structure adjustments were made to the action ontology:

1) Classification into pre-defined action classes (e.g. tool action, tool with mover action etc.,
see D2.1) is skipped in order to avoid the possible limitations on the number of such
classes. This classification is intended to be brought back later by applying automated
classification procedures to action environment information in the ontology.

2) General classes (ACTION and OBJECT) previously introduced into the ACAT ontology remain
as they were.

3) Corresponding classes (ACTION and OBJECT) and relations from Wordnet lexical ontology
are used.

4) Actions entities are displayed as individuals of actions synsets (class members).
5) Each action class is described by properties: main action, robotic action and supportive

action.
6) Action individuals are connected with object individuals by relationships: “with main

object”, “with primary object”, “with secondary object”, objects holonyms/meronyms - by
property: “part of”.

Extracted actions and objects from focused text instructions and the transcribed focused videos
are used as basic data for focused action ontology for IASSES and CHEMLAB scenarios.

Some illustrations on the obtained ontology structure are given in the figures next. The leftmost
frames in Fig. 11 show the hierarchical structure of action and object classes (synsets). (A synset is
a set of entities with the same meaning, either an action, or an object.) Actions entities are
displayed as individuals of actions synsets (class members) and each synset class is described by
gloss and examples from Wordnet.

Page 17 of 53

Fig. 11. ACAT ontology structure: action and object synsets (IASSES scenario)

Fig. 12. ACAT ontology structure: part relations (IASSES scenario)

Each action class is described by the following properties: “main action”, “robotic action” and
“supportive action” (variables: main_action, robotic_action and supportive_action in the ontology,
upper table in Fig. 11). The property “robotic action” (1 or 0) allows us to distinguish at which level
(directly associated to robotic action or not) an instruction is given. For the second year of the
project we are analyzing only instruction directly associated to robotics actions (like pick&place,
open, close or shake). Interpretation of instructions not directly associated to robotic actions (like

Page 18 of 53

neutralize or harvest) is left for the last year of the project, as already was indicated in the
introduction.

With the help of properties “main action” and “supportive action” we solve the question of
mapping instructions into ADTs. Note, we want to create one ADT for each so called “ADT-action”,
which starts with the hand approaching and grasping an object and ends with the hand releasing
an object (and retracting). The property “main action” is given to the “central” action word (verb)
to which ADT is to be associated. The property “supportive” action is given to action words which
shall be mapped to parts of ADT. For example, if one has an instruction in the instruction sheet
“Pick up the test tube and shake it”, we want an ADT associated only to the verb “shake”, where
picking up of the test tube will be just initial part of the ADT “shake”. Another part of the same
ADT will indicate putting down of the test tube after shaking, even though the putting down was
not mentioned in the example instruction explicitly. Linguistically, supportive actions can either be
mentioned in the instruction or not, but the main action will always be mentioned. Thus, the
properties “main action” and “supportive action” were introduced to dis-entangle action-word-to-
ADT mapping which is not straightforward, due to natural omissions in language.

Further, action individuals are connected with object individuals by the following relationships:
with main object, with primary object, with secondary object. Objects are connected with
holonyms/meronyms by the “part of” relation.

Synsets are organized in a hierarchical structure, where a synset can have superordinate and
subordinate synsets. E.g., the “container” synset is the hypernym for the “box” synset.

Fig. 12 shows the members of a synset with the holonym/meronym relations, showing which
objects are parts of other objects.

4.4. Filling in missing information with knowledge from ACAT action
ontology

In the process of instruction completion, the ACAT ontology is queried for the following purposes:
• to extract action structure for known actions,
• to get detailed information for objects participating in an action.

By the structured conceptual view of stored data, the ACAT ontology is used in describing the class
hierarchy (taxonomy) of the concepts, concept properties and allows filling missing information
(e.g. which object can be used with a given action) by using known relationships.

Fig. 13 presents the conceptual model of knowledge extraction by querying the ACAT action
ontology. Each query makes use of the instruction parsing results – recognized verbs (actions that
the robot has to perform) and objects associated to the action.

Page 19 of 53

Fig. 13. Knowledge extraction by querying the ACAT ontology

Ontology querying starts after gathering the results of syntax dependency and POS parsing
(described in section 4.1). Verbs are extracted from each parsed sentence and verbs with the
property “main_action=1” are identified. Each of those verbs corresponds to one ADT that has
to be created.

By querying the ontology using SPARQL queries we can define the action class, which in turn
defines the structure (e.g. how many objects and in which roles are involved) for the action. An
example of a SPARQL query for defining the action class for an action "harvest" is given in Fig.
14.

Page 20 of 53

Fig. 14. Example: SPARQL query for action information extraction

Knowing the structure of the action, the next step of instruction sheet knowledge processing is
to fill-in information for each object involved in the action. Objects and their relations to main
action (roles) need to be defined. Dependency parsing data is used for describing the syntactic
roles of the objects. Additional action object properties, which are not mentioned explicitly in
the instruction sheets, can be obtained by querying the ACAT ontology using SPARQL queries
(Fig. 15). If an action background object is not mentioned in the instruction sheet, there is the
possibility to query the most probable action object from the list of objects, included in ACAT
ontology.

Fig. 15. SPARQL query for describing properties of an action object.

Main action as well as object roles (main object, primary object, secondary object, tool, see
Appendix A.4 for object role definitions) are defined by analyzing the sentence structure and
dependency parsing results. Syntactic relations between words in the sentence are useful for
object role identification. Relation “dobj” identifies direct (main) object of an action word (verb) in
the sentence. A corresponding noun phrase is taken as the object. (E.g. in a sentence “Put rotor
cap on conveyor”, the “rotor cap” is the main object of the action verb “put”). Additional rules are
needed to identify primary and secondary objects. (E.g. in the mentioned sentence “Put rotor cap
on conveyor”, the “conveyor” in ACAT notation is the secondary object of the action verb “put”).
Syntactic patterns with prepositional modifiers (e.g. prep_in, prep_on, prep_for) are used in the

 Query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX corpus_ontology: <http://www.semanticweb.org/user/ontologies/2013/11/robot_ontology#>

SELECT DISTINCT ?action ?property ?object
 WHERE {?class rdfs:subClassOf* corpus_ontology:ACTION.
 ?action ?property ?object.
 FILTER(?action=corpus_ontology:harvest)
 }

Query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX corpus_ontology: <http://www.semanticweb.org/user/ontologies/2013/11/robot_ontology#>

SELECT DISTINCT ?action_object ?property ?object
 WHERE {?action_object ?property ?object.
 FILTER(?action_object=corpus_ontology:cell)
 }

Page 21 of 53

recognition of primary and secondary objects. List of all syntactic rules can be found in Stanford
parser typed dependencies manual3.

A preliminary action data table (ADT), filled out with data from instruction sheets and ACAT
ontology queries, is constructed by filling in general instruction information: instruction
description (e.g. Pick a rotor cap from the fixture and put it on the robot platform), action name
(e.g. pick), main object (e.g. rotor cap), primary object (e.g. fixture) and secondary object (e.g.
robot platform) (Fig. 16). This preliminary ADT can later be updated with signal level data which is
the topic of D3.2.

Fig. 16. Example of a preliminary ADT structure

5. Textual instruction completion experiments for ACAT project scenarios
All the results presented in this chapter were obtained using the “ACAT Instruction Compiler” for
which the algorithmic details were provided in Chapter 4 and the documentation is provided in
Appendix A.1.

3 http://nlp.stanford.edu/software/dependencies_manual.pdf

Page 22 of 53

For both scenarios, IASSES and CHEMLAB, the ACAT instruction completion application gives
results of the same structure:

- syntactic analysis results with action words (verbs) and their dependency with action objects
(nouns);

- ACAT ontology query results with identified action synsets, action synset description and
possible action objects;

- ACAT ontology query results with identified action, objects and their properties;
- preliminary ADT’s for each action step.

Instruction parsing algorithms are the same for both scenarios. The difference is in the knowledge
base, which is used for extracting information needed for instruction completion. Each scenario
has a different ontology, built from domain-specific texts and focused, using instruction sets from
specific area of planned experiments.

5.1. IASSES scenario
First, the ACAT instruction parsing and ontology quering in IASSES scenario will be demonstrated
“step by step” for an instruction: “Put rotor cap on conveyor” (Fig. 17). Later we will give more
condensed analysis results for the entire instruction sheet of the IASSES scenario as presented in
the Appendix A.2.

Fig. 17. Example of text parsing results for IASSES scenario

Instruction parsing starts from complex object mapping into simple ones. In this case, object rotor
cap is mapped to simple cap (Fig. 17 – “Transformed sentence” row information).

Page 23 of 53

In the next step, POS and dependency parsing is executed for the instruction sentence. Each word
in the instruction sentence is described by its part of speech and also dependencies between the
words are defined (Fig. 17).

Sentence “Put rotor cap on conveyor” POS annotation (“POS tags” row information in Fig. 17)
results: put – verb, base form (VB), cap – noun, singular (NN), on – preposition (IN), conveyor –
noun, singular (NN).4

Dependency parsing annotation results are presented in the “Parsed info” rows (Fig 17): dobj(put-
1, rotor cap-2) means, that the rotor cap is the direct object of the action put, prep_on(put-1,
conveyor-4) – the target object (place) of the action put is the conveyor. We used a collapsed
dependencies model, which attaches all preposition to a basic prepositional modifier role.5

In case the analyzed sentence is more complex and contains information not only about actions
and objects, then verb and noun dependency analysis results are filtered (“Parsed verbs and
objects” rows) – this information is used in the ontology querying step.

After saving the parsing results to an application internal database, the ontology querying phase
begins. For convenience, the ontology querying results can be grouped into ACTION-
INFORMATION and OBJECT-INFORMATION logical groups (Fig 18).

Fig. 18. Sample ontology querying results for IASSES scenario

For each action verb in a sentence, an ontology SPARQL query is built. All corresponding verb
instances in the ontology, belonging to the ACTION category, are selected. Query results also

4 Full list of Penn Treebank POS tags, used in Stanford NLP project:
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
5 Full list of dependency types, used in Stanford NLP project: http://nlp.stanford.edu/software/dependencies_manual.pdf

Page 24 of 53

describe that the action put is similar to actions place and move (owl:sameAs – move, place). All
these actions belong to the same synset. Ontology querying results also include synonyms, both
for actions and for action background elements (objects), wherever possible. In the example (Fig.
19), rotor cap is defined as an object similar (owl:sameAs) to cap. It is defined as ontology entity
(owl:NamedIndividual).

Fig. 19. Sample ontology querying results for IASSES scenario

Further, the instruction completion experiment, using the ACAT Instruction Compiler was run for
the set of IASSES instructions taken from the IASSES instruction sheet (Appendix A.2). Instructions
1 to 7 from the sheet were processed. Fig. 20 presents Compiler screenshots with the examples of
dependency parsing, ontology querying and reasoning results.

The results of the instruction completion experiment for the IASSES scenario are presented in
Table 1. The table includes the sentence, which was parsed, dependency parsing results and
ontology querying results. It also includes analysis results on recognized actions and objects, which
are included in the examples of preliminary ADTs.

Table 1 is to be read as follows:

The column “Command” presents an instruction in natural language the way it is written in the
instruction sheet, e.g. “Take one metal ring from the top of ring stack and put it into the ring
dispenser”.

The column “Dependency and POS parsing results” presents part of speech parsing results, as well
as dependencies between extracted entities; e.g. for part of speech: “Take-VB” denotes that
“Take” is a verb; “one-CD” denotes that “one” is a cardinal number and “metal-NN” denotes that
“metal” is a noun, etc.; for dependencies e.g.: “num(ring-4, one-2)” indicates that “one” shows
number of “rings”; “dobj(Take-1, ring-4)” indicates that the “ring” is the object of the verb “take”,
etc.

Page 25 of 53

Fig. 20. Compiler screenshot examples (IASSES scenario)

The column “Ontology quering results” shows information extracted from the ontology for action
and objects indicated in the instruction. All synsets associated with the appropriate instance of the
verb or the noun in the sentence, including Wordnet synset ID (when available) are indicated (e.g.
put_synset_1481373) as well as detailed synset description, including Wordnet gloss (e.g. "put
into a certain place or abstract location") and Wordnet class hierarchy (e.g. subClassOf -
move_synset_1832958).

The column “Recognized action and objects” show actual results of the instruction textual
completion procedure. These results are later filled into the ADT. These include main action of the
instruction, main object, primary object and secondary object parsed from an instruction
sentence.

Page 26 of 53

The column “ADT blueprint” has links to actual ADTs pre-filled with symbolic information for the
corresponding instructions, which are downloadable from the document in computer format. For
the printed material we provide an excerpt of an example of the ADT blueprint in Fig. 21. Note,
that the ADT at this stage contains information only about analyzed instruction and its main
action, main object, primary object and secondary object.

Table 1. Results of textual instruction completion experiment (IASSES scenario)

Comma
nd

Dependency
and POS
parsing results

Ontology querying results Recognized
actions and
objects

ADT blueprint

Take
one
metal
ring
from
the top
of ring
stack
and put
it into
the ring
dispens
er.

num(ring-4,
one-2)
dobj(Take-1,
ring-4)
det(top-7, the-
6)
prep_from(Tak
e-1, top-7)
prep_of(top-7,
stack-10)
conj_and(Take-
1, put-12)
dep(put-12,
stack-13)
det(dispenser-
17, the-15)
prep_into(stack
-13, dispenser-
17)
Take-VB one-
CD metal-NN
ring-NN from-
IN the-DT top-
NN of-IN ring-
NN stack-NNS
and-CC put-VB
stack-VB into-
IN the-DT ring-
NN dispenser-
NN

take_synset_17 example - string
subClassOf - ACTION
type – Class

• main action:
put

• main object:
ring

• primary
object: stack

• secondary
object:
dispenser

ADT_blueprint_put_ring.xml

take_synset_12 example - string
subClassOf - ACTION
type – Class

remove_synset_17 subClassOf - ACTION
type - Class
example - string

choose_synset_66655
5

subClassOf - ACTION
type – Class

pull_synset_1338932 example - string
subClassOf -
remove_synset_17
type – Class

hold_synset_12 subClassOf - ACTION
type – Class

put_synset_1481373 gloss - "put into a certain
place or abstract location"
example - string
subClassOf -
move_synset_1832958
type – Class

put_synset_148 example - "That song put
me in awful good humor"
subClassOf -
change_synset_123976
type - Class
gloss - "put into a certain
place or abstract location"
example - string
subClassOf -
move_synset_1832958

pose_synset_1481373 gloss - "put into a certain
place or abstract location"
example - string
subClassOf -
move_synset_1832958
type – Class

place_synset_1481373 gloss - "put into a certain
place or abstract location"
example - string
subClassOf -
move_synset_1832958
type – Class

Page 27 of 53

ring_synset_3495342 gloss - "a rigid circular band
of metal or wood or other
material used for holding or
fastening or hanging or
pulling"
example - "there was still a
rusty iron hoop for tying a
horse"
subClassOf -
band_synset_2757893
type – Class

discard_synset_22 gloss - "Throw or cast
away"
example - string
subClassOf -
get_rid_of_synset_22
type – Class

Grasp
the ring
from
the side
at the
jaw of
the ring
dispens
er and
drop it
into a
cylindric
al
holder
standin
g on the
station.

det(ring-3, the-
2)
dobj(drop-15,
dispenser-16)
det(standing-
21, a-18)
amod(standing-
21, cylindrical-
19)
prep_into(drop
-15, standing-
21)
det(station-24,
the-23)
prep_on(standi
ng-21, station-
24)
dobj(Grasp-1,
ring-3)
det(side-6, the-
5)
prep_from(Gra
sp-1, side-6)
det(jaw-9, the-
8)
prep_at(side-6,
jaw-9)
det(dispenser-
13, the-11)
prep_of(jaw-9,
dispenser-13)
conj_and(Grasp
-1, drop-15)
Grasp-VB the-
DT ring-NN
from-IN the-DT
side-NN at-IN
the-DT jaw-NN
of-IN the-DT
ring-NN
dispenser-NN
and-CC drop-VB
dispenser-NN
into-IN a-DT
cylindrical-JJ
holder-NN
standing-NN
on-IN the-DT
station-NN

grasp_synset_1204684 Gloss – “Hold firmly”
Example – string
subClassOf -
hold_synset_1205350
type – Class

• main
action:
drop

• main
object:
ring

• primary
object:
dispenser

• secondary
object:
holder

ADT_blueprint_drop_ring.xml

ring_synset_3495342 gloss - "a rigid circular band
of metal or wood or other
material used for holding or
fastening or hanging or
pulling"
example - "there was still a
rusty iron hoop for tying a
horse"
subClassOf -
band_synset_2757893
type – Class

take_synset_2 gloss - "take something or
somebody with oneself
somewhere"
example - string
subClassOf -
transport_synset_1437285
type – Class

bring_synset_1421 subClassOf - ACTION
type – Class

holder_synset_348721
4

gloss - "a holding device"
example - "a towel holder"
subClassOf -
holding_device_synset_348
7525
type – Class

Page 28 of 53

Take
the
rotor
shaft
from
the
fixture
and
insert it
into the
cylindric
al
holder.

det(shaft-4,
the-2)
dobj(Take-1,
shaft-4)
det(fixture-7,
the-6)
prep_from(Tak
e-1, fixture-7)
conj_and(Take-
1, insert-9)
dobj(insert-9,
fixture-10)
det(holder-14,
the-12)
amod(holder-
14, cylindrical-
13)
prep_into(inser
t-9, holder-14)
Take-VB the-DT
rotor-NN shaft-
NN from-IN
the-DT fixture-
NN and-CC
insert-VB
fixture-NN into-
IN the-DT
cylindrical-JJ
holder-NN

holder_synset_348721
4

gloss - "a holding device"
example - "a towel holder"
subClassOf -
holding_device_synset_348
7525
type – Class

• main
action:
insert

• main
object:
shaft

• primary
object:
fixture

• secondary
object:
holder

ADT_blueprint_put_shaft.xml

take_synset_2 gloss - "take something or
somebody with oneself
somewhere"
example - string
subClassOf -
transport_synset_1437285
type – Class

shaft_synset_4134 subClassOf - rod_synset_4
type - Class
gloss - "a revolving rod that
transmits power or motion"
gloss - "the axis around
which the major rotor of a
helicopter turns"
subClassOf - b
subClassOf -
axis_synset_2738643

fixture_synset_331926
1

subClassOf -
artifact_synset_2
type – Class

insert_synset_184835 gloss - "introduce"
example - "Insert your
ticket here"
subClassOf -
put_synset_1481373
type – Class

Turn
the
rotor
shaft so
that the
magnet
hole is
in front
of the
robot.

det(shaft-4,
the-2)
dobj(Turn-1,
shaft-4)
advmod(is-10,
so-5)
mark(is-10,
that-6)
det(hole-9, the-
7)
nsubj(is-10,
hole-9)
advcl(Turn-1,
is-10)
det(robot-15,
the-14)
prep_in_front_
of(is-10, robot-
15)
Turn-VB the-DT
rotor-NN shaft-
NN so-RB that-
IN the-DT
magnet-NN
hole-NN is-VBZ
in-IN front-NN
of-IN the-DT
robot-NN

turn_synset_2 subClassOf - ACTION
type – Class

main action:
turn
main object:
shaft
primary
object:
secondary
object:

ADT_blueprint_turn_shaft.xml

change_state_synset_
143724

subClassOf - ACTION
type – Class

shaft_synset_4 subClassOf - rod_synset_4
type - Class
gloss - "a revolving rod that
transmits power or motion"
gloss - "the axis around
which the major rotor of a
helicopter turns"
subClassOf -
axis_synset_2738643

Pick a
magnet
from
the
magnet
dispens
er and
insert it

det(magnet-3,
a-2)
rcmod(hole-14,
is-16)
advmod(is-16,
directly-17)
det(robot-22,
the-21)

pick_synset_668416 gloss - "select carefully
from a group"
subClassOf -
choose_synset_666555
type – Class

main action:
insert
main object:
magnet
primary
object:
dispenser
secondary

ADT_blueprint_insert_magnet.xml

magnet_synset_36644
43

gloss - "a device that
attracts iron and produces
a magnetic field"

Page 29 of 53

into the
magnet
hole
that is
directly
in front
of the
robot.

prep_in_front_
of(is-16, robot-
22)
dobj(Pick-1,
magnet-3)
det(dispenser-
7, the-5)
prep_from(Pick
-1, dispenser-7)
conj_and(Pick-
1, insert-9)
dobj(insert-9,
dispenser-10)
det(hole-14,
the-12)
prep_into(inser
t-9, hole-14)
nsubj(is-16,
hole-14)
Pick-VB a-DT
magnet-NN
from-IN the-DT
magnet-NN
dispenser-NN
and-CC insert-
VB dispenser-
NN into-IN the-
DT magnet-NN
hole-NN that-
WDT is-VBZ
directly-RB in-
IN front-NN of-
IN the-DT
robot-NN

subClassOf -
device_synset_315
type – Class

object: hole

dispenser_synset_317
75

gloss - "a container so
designed that the contents
can be used in prescribed
amounts"
subClassOf -
container_synset_3
type – Class

insert_synset_184835 gloss - "introduce"
example - "Insert your
ticket here"
subClassOf -
put_synset_1481373
type – Class

Repeat
steps 4
and 5
for 7
times.

nsubj(steps-2,
Repeat-1)
dobj(steps-2, 4-
3)
conj_and(4-3,
5-5)
number(times-
8, 7-7)
prep_for(steps-
2, times-8)
Repeat-NN
steps-VBZ 4-CD
and-CC 5-CD
for-IN 7-CD
times-NNS

No data No data main action:
steps
main object:
primary
object: steps
secondary
object:

Pick a
rotor
cap
from
the
fixture
on the
robot
platfor
m.

det(rotor cap-3,
a-2)
dobj(Pick-1,
rotor cap-3)
det(fixture-6,
the-5)
prep_from(Pick
-1, fixture-6)
det(robot
platform-9,
the-8)
prep_on(fixture
-6, robot
platform-9)
Pick-VB a-DT
cap-NN from-IN
the-DT fixture-
NN on-IN the-
DT platform-NN

pick_synset_668416 gloss - "select carefully
from a group"
subClassOf -
choose_synset_666555
type – Class

main action:
pick
main object:
cap
primary
object: fixture
secondary
object:

ADT_blueprint_pick_rotor_cap.xml

cap_synset_2926697 gloss - "something serving
as a cover or protection"
subClassOf -
protective_covering_synset
_3969138
type – Class

platform_synset_3917 gloss - "a raised horizontal
surface"
example - "the speaker
mounted the platform"
subClassOf -
horizontal_surface_synset_
34977
type – Class

Page 30 of 53

fixture_synset_331926
1

subClassOf -
artifact_synset_2
type – Class

Fig. 21. Excerpt of a prefilled ADT file for instruction command: Take one metal ring from the top
of ring stack and put it into the ring dispenser

Table 2 presents the analysis of the above presented instruction completion experiment, pointing
to inaccuracies, explaining them and planning actions for improvement.

Table 2. Error analysis for textual instruction completion experiment (IASSES scenario)

Instruction Result of completion Explanation Possible actions
Turn the rotor shaft so that the
magnet hole is in front of the
robot.

main action: turn
main object: shaft
primary object: -
secondary object: -

First part of the parser results is
correct – main action and main
object were recognized. However,
the information about detailed
action post conditions (i.e. “hole is
in front of the robot”) can not be
passed to the ADT (a slot for the
detailed post-condition
description is not included into
the ADT).

Adding the more detailed post-
condition information to ADT
would allow defining action more
accurately.

Pick a magnet from the magnet
dispenser and insert it into the
magnet hole that is directly in
front of the robot.

main action: insert
main object: magnet
primary object: dispenser
secondary object: hole

First part of the results of the
parser is correct – main action and
main, primary and secondary
objects were recognized.
However, the information about
magnet hole position can not be
passed to the ADT.

Adding the more detailed post-
condition information to ADT
would allow defining action
more accurately.

Repeat steps 4 and 5 for 7 times. main action: steps
main object:
primary object: steps
secondary object:

All parsed information is
incorrect. This happened, because
of wrong parser annotation:
nsubj(steps-2, Repeat-1),
dobj(steps-2, 4-3), conj_and(4-3,
5-5), number(times-8, 7-7),
prep_for(steps-2, times-8),
Repeat-NN steps-VBZ 4-CD and-CC
5-CD for-IN 7-CD times-NNS.
Repeat action is recognized as an
object and steps – as an action.

Though here a parsing error has
occurred, instruction “repeat”
shall be in general treated as a
special case. This is a very specific
instruction, telling what to do
with the instruction steps, but not
with actual objects.

Page 31 of 53

5.2. CHEMLAB scenario
The instruction textual completion experiment with the ACAT Instruction Compiler was run for the
set of instructions presented in Appendix A.3. Approximately half of the instructions were
processed, where repeating instructions were omitted (e.g. in the instruction sheet opening and
closing centrifuge, opening and closing bottles, pouring liquid into cartridges was happening
multiple times). Fig. 22 presents Compiler screenshots, with the examples of dependency parsing,
ontology querying and reasoning results.

Fig. 22. Compiler screenshot examples (CHEMLAB scenario)

Page 32 of 53

The results of the instruction completion experiment for the CHEMLAB scenario are presented in
Table 3. The table includes sentence, which was parsed, dependency parsing results and ontology
querying results. It also includes analysis results on recognized actions and objects, which are
included in the examples of preliminary ADTs.

The structure of the Table 3 is analogous to the Table 1 presented for IASSES scenario (see section
5.1 for detailed Table 1 column description).

Table 3. Results of the textual instruction completion experiment (CHEMLAB scenario)

Command Dependency
parsing results

Ontology querying results Recognized
actions and
objects

ADT blueprint

Open
centrifuge.

nsubj(centrifuge-
2, Open-1)
Open-NNP
centrifuge-VBP

open_synset_1333895

gloss - "cause to open
or to become open"
example - "Mary
opened the car door"
subClassOf - ACTION
type - Class

main action:
open
main object:
centrifuge
primary
object: -
secondary
object: -

ADT_blueprint_open_centrifuge.xml

centrifuge_synset_29
66875

gloss - "an apparatus
that uses centrifugal
force to separate
particles from a
suspension"
subClassOf -
apparatus_synset_27
type - Class

centrifuge_synset_2

gloss - "an apparatus
that uses centrifugal
force to separate
particles from a
suspension"
subClassOf -
apparatus_synset_27
type - Class
gloss - "rotate at very
high speed in order to
separate the liquids
from the solids"
subClassOf -
spin_synset_2
example - string

Pour
suspension
of e-coli
from a
flask into a
plastic
bottle PB1

dobj(pour-3,
suspension-4)
prep_of(suspensi
on-4, e-coli-6)
det(flask-9, a-8)
prep_from(e-coli-
6, flask-9)
det(PB1-14, a-11)
amod(PB1-14,
plastic-12)
prep_into(pour-3,
PB1-14)
Pour-VB
suspension-NN of-
IN e-coli-NN from-
IN a-DT flask-NN
into-IN a-DT
plastic-JJ bottle-
NN PB1-NN

suspension_synset_14
397489

gloss - "a mixture in
which fine particles are
suspended in a fluid
where they are
supported by
buoyancy"
subClassOf -
mixture_synset_14392
656
type - Class

main action:
pour
main object:
suspension
primary
object: flask
secondary
object: bottle
pb1

ADT_blueprint_pour_suspension.xml

Pick a
bottle PB1

det(PB1-4, a-2)
dobj(Pick-1, PB1-

pick_synset_668416 gloss - "select carefully
from a group"

main action:
pick

Page 33 of 53

with e-coli
and put it
into
centrifuge

4)
prep_with(Pick-1,
e-coli-6)
conj_and(Pick-1,
put-8)
dobj(put-8, e-coli-
9)
prep_into(put-8,
centrifuge-11)
Pick-VB a-DT
bottle-NN PB1-NN
with-IN e-coli-NN
and-CC put-VB e-
coli-NN into-IN
centrifuge-NN

example - string
subClassOf -
choose_synset_666555
type - Class

main object:
bottle PB1
primary
object: -
secondary
object:
centrifuge

pick_synset_17541 gloss - "remove in small
bits"
example - "pick meat
from a bone"
subClassOf -
remove_synset_17
type - Class

pick_synset_1369876 gloss - "look for and
gather"
example - string
subClassOf -
gather_synset_136844
9
type - Class

choose_synset_66655
5

subClassOf - ACTION
type - Class

pick_up_synset_1957
772

gloss - "take and lift
upward"
subClassOf -
raise_synset_1955745
type - Class

pick_up_synset_1196
1

gloss - "take up by
hand"
example - "He picked
up the book and
started to read"
subClassOf -
touch_synset_1194934
type - Class

bottle_synset_284879
8

gloss – "a glass or
plastic vessel used for
storing drinks or other
liquids typically
cylindrical without
handles and with a
narrow neck that can
be plugged or capped"
subClassOf –
vessel_synset_4476617

put_synset_1481373 gloss - "put into a
certain place or
abstract location"
example - string
subClassOf -
move_synset_1832958
type - Class

put_synset_148 example - "That song
put me in awful good
humor"
subClassOf -
change_synset_123976
type - Class
gloss - "put into a
certain place or
abstract location"
example - string
subClassOf -
move_synset_1832958

pose_synset_1481373 gloss - "put into a
certain place or
abstract location"
example - string
subClassOf -
move_synset_1832958

Page 34 of 53

type – Class
place_synset_148137
3

gloss - "put into a
certain place or
abstract location"
example - string
subClassOf -
move_synset_1832958
type - Class

discard_synset_22 gloss - "Throw or cast
away"
example - string
subClassOf -
get_rid_of_synset_22
type - Class

Close the
lid of
centrifuge.

det(lid-3, the-2)
dobj(Close-1, lid-
3)
prep_of(lid-3,
centrifuge-5)
Close-VB the-DT
lid-NN of-IN
centrifuge-NN

close_synset_128 gloss - "unite or bring
into contact or bring
together the edges of"
example - string
subClassOf -
join_synset_128369
type - Class

main action:
close
main object:
lid
primary
object: -
secondary
object: -

ADT_blueprint_close_lid.xml

close_synset_1465564 gloss - "bar access to"
example - string
arricade_synset_14651
61
type - Class

close_synset_1333199 example - string
subClassOf - ACTION
type - Class

lid_synset_362 subClassOf -
cover_synset_44
type - Class

Start
centrifuge
by pressing
a button
But1.

dep(centrifuge-2,
Start-1)
prepc_by(centrifu
ge-2, pressing-4)
det(But1-7, a-5)
dobj(pressing-4,
But1-7)
Start-NNP
centrifuge-JJ by-
IN pressing-VBG
a-DT button-NN
But1-NNS

centrifuge_synset_29
66875

gloss - "an apparatus
that uses centrifugal
force to separate
particles from a
suspension"
subClassOf -
apparatus_synset_27
type - Class

main action:
pressing
main object:
but
primary
object:
centrifuge
secondary
object: -

ADT_blueprint_press_button.xm

centrifuge_synset_2 gloss - "an apparatus
that uses centrifugal
force to separate
particles from a
suspension"
subClassOf -
apparatus_synset_27
type - Class
gloss - "rotate at very
high speed in order to
separate the liquids
from the solids"
subClassOf -
spin_synset_2
example - string

Wait for 10
minutes.

num(minutes-4,
10-3)
prep_for(Wait-1,
minutes-4)
Wait-VB for-IN
10-CD minutes-
NNS

 main action:
wait
main object: -
primary
object: -
secondary
object:-

ADT_blueprint_wait_.xml

Stop
centrifuge
by pressing
button
But1.

dep(centrifuge-2,
Stop-1)
prepc_by(centrifu
ge-2, pressing-4)
dobj(pressing-4,

barricade_synset_146
5161

subClassOf - ACTION
type - Class

main action:
press
main object:
button but1
primary

ADT_blueprint_press_button_1.xml

centrifuge_synset_29
66875

gloss - "an apparatus
that uses centrifugal
force to separate

Page 35 of 53

But1-6)
Stop-VB
centrifuge-JJ by-
IN pressing-VBG
button-NN But1-
NNS

particles from a
suspension"
subClassOf -
apparatus_synset_27
type - Class

object:
centrifuge
secondary
object: -

centrifuge_synset_2 loss - "an apparatus
that uses centrifugal
force to separate
particles from a
suspension"
subClassOf -
apparatus_synset_27
type - Class
gloss - "rotate at very
high speed in order to
separate the liquids
from the solids"
subClassOf -
spin_synset_2
example - string

Open the
lid of the
centrifuge.

det(lid-3, the-2)
dobj(Open-1, lid-
3)
det(centrifuge-6,
the-5)
prep_of(lid-3,
centrifuge-6)
Open-VB the-DT
lid-NN of-IN the-
DT centrifuge-NN
.-.

open_synset_1333895 gloss - "cause to open
or to become open"
example - "Mary
opened the car door"
subClassOf - ACTION
type - Class

main action:
open main
object: lid
primary
object: -
secondary
object:-

ADT_blueprint_open_lid.xml

lid_synset_362 subClassOf -
cover_synset_44
type - Class

Take out
the bottle
PB1 of
centrifuge
and put it
on fixature

prt(Take-1, out-2)
det(PB1-5, the-3)
dobj(Take-1, PB1-
5)
prep_of(PB1-5,
centrifuge-7)
conj_and(Take-1,
put-9)
dobj(put-9,
centrifuge-10)
prep_on(put-9,
fixature-12)

Take-VB out-RP
the-DT bottle-NN
PB1-NN of-IN
centrifuge-NN
and-CC put-VB
centrifuge-NN on-
IN fixature-NN

take_synset_17 example - string
subClassOf - ACTION
type - Class

main action:
put
main object:
bottle pb1
primary
object:
centrifuge
secondary
object:
fixature

ADT_blueprint_put_bottle.xml
 take_synset_12 example - string

subClassOf - ACTION
type - Class

remove_synset_17 subClassOf - ACTION
type - Class
example - string

choose_synset_66655
5

subClassOf - ACTION
type - Class

bottle_synset_284879
8

subClassOf -
vessel_synset_4476617
type - Class

centrifuge_synset_29
66875

gloss - "an apparatus
that uses centrifugal
force to separate
particles from a
suspension"
subClassOf -
apparatus_synset_27
type - Class

pull_synset_1338932 example - string
subClassOf -
remove_synset_17
type - Class

hold_synset_12 subClassOf - ACTION
type - Class

put_synset_1481373 gloss - "put into a
certain place or
abstract location"
example - string

subClassOf -
move_synset_1832958

Page 36 of 53

type - Class
put_synset_148 example - "That song

put me in awful good
humor"
subClassOf -
change_synset_123976
type - Class
gloss - "put into a
certain place or
abstract location"
example - string
subClassOf -
move_synset_1832958

pose_synset_1481373 gloss - "put into a
certain place or
abstract location"
example - string
subClassOf -
move_synset_1832958
type - Class

place_synset_148137
3

gloss - "put into a
certain place or
abstract location"
example - string
subClassOf -
move_synset_1832958
type - Class

discard_synset_22 gloss - "Throw or cast
away"
example - string
subClassOf -
get_rid_of_synset_22
type - Class

Open the
plastic
bottle PB1

det(PB1-5, the-2)
amod(PB1-5,
plastic-3)
dobj(Open-1, PB1-
5)
Open-VB the-DT
plastic-JJ bottle-
NN PB1-NN

open_synset_1333895 gloss - "cause to open
or to become open"
example - "Mary
opened the car door"
subClassOf - ACTION
type - Class

main action:
open
 main object:
bottle
 primary
object: -
secondary
object:-

ADT_blueprint_open_bottle.xml

bottle_synset_284879
8

subClassOf -
vessel_synset_4476617
type - Class

Pour the
liquid out
of the
bottle PB1
into a flask

det(liquid-3, the-
2)
dobj(Pour-1,
liquid-3)
det(PB1-8, the-6)
prep_out_of(liqui
d-3, PB1-8)
det(flask-11, a-10)
prep_into(Pour-1,
flask-11)
Pour-VB the-DT
liquid-NN out-RB
of-IN the-DT
bottle-NN PB1-NN
into-IN a-DT flask-
NN

liquid_synset_147436
67

subClassOf - MATERIAL
type - Class

main action:
pour
 main object:
liquid primary
object: bottle
PB1
secondary
object: flask

ADT_blueprint_pour_liquid.xml

liquid_synset_147433
53

gloss - "a substance in
the fluid state of matter
having no fixed shape
but a fixed volume"
subClassOf -
fluid_synset_14742729
type - Class

bottle_synset_284879
8

subClassOf -
vessel_synset_4476617
type - Class

Pipette 15
ml of
buffer R3
into bottle
PB1

num(ml-3, 15-2)
dobj(Pipette-1,
ml-3)
prep_of(ml-3, R3-
6) prep_of(ml-3,
buffer-5)
prep_into(Pipette
-1, PB1-9)
prep_into(Pipette
-1, bottle-7)

bottle_synset_284879
8

subClassOf -
vessel_synset_4476617
type - Class

main action:
pipette
main object:
buffer
primary
object: -
secondary
object: bottle

ADT_blueprint_pipette_buffer.xml

Page 37 of 53

Pipette-VB 15-CD
ml-NN of-IN
buffer-NN into-IN
bottle-NN

Close the
bottle PB1
again

det(PB1-4, the-2)
dobj(Close-1,
bottle-3)
advmod(Close-1,
again-4) Close-VB
the-DT bottle-NN
again-RB

close_synset_128 gloss - "unite or bring
into contact or bring
together the edges of"
example - string

subClassOf -
join_synset_128369
type - Class

main action:
close
main object:
bottle
primary
object:
secondary
object:

ADT_blueprint_close_bottle.xml

close_synset_1465564 gloss - "bar access to"
example - string

arricade_synset_14651
61
type - Class

bottle_synset_284879
8

subClassOf -
vessel_synset_4476617
type - Class

Shake the
bottle PB1
by holding
against the
shaking
device

det(bottle-3, the-
2)
dobj(Shake-1,
bottle-3)
prepc_by(Shake-
1, holding-5)
det(device-9, the-
7)
amod(device-9,
shaking-8)
prep_against(hold
ing-5, device-9)
Shake-VB the-DT
bottle-NN by-IN
holding-VBG
against-IN the-DT
shaking-VBG
device-NN

shake_synset_1872 gloss - "move or cause
to move back and
forth"
example - string
subClassOf -
move_synset_1814387
type - Class

main action:
shake
main object:
bottle
primary
object:
secondary
object:

ADT_blueprint_shake_bottle.xml

bottle_synset_284879
8

subClassOf -
vessel_synset_4476617
type - Class

Open the
bottle PB1

det(bottle-3, the-
2) dobj(Open-1,
bottle-3) Open-VB
the-DT bottle-NN

open_synset_1333895 gloss - "cause to open
or to become open"
example - "Mary
opened the car door"
subClassOf - ACTION
type - Class

main action:
open
main object:
bottle
primary
object:
secondary
object:

ADT_blueprint_open_bottle_1.xml

bottle_synset_284879
8

subClassOf -
vessel_synset_4476617
type - Class

Open the
bottle with
lysis buffer
PB2

det(bottle-3, the-
2)
dobj(Open-1,
bottle-3)
prep_with(Open-
1, lysis buffer-5)
Open-VB the-DT
bottle-NN with-IN
buffer-NN

open_synset_1333895

gloss - "cause to open
or to become open"
example - "Mary
opened the car door"
subClassOf - ACTION
type - Class

main action:
open
main object:
bottle
primary
object: lysis
buffer
secondary
object:

ADT_blueprint_open_bottle_2.xml

bottle_synset_284879
8

subClassOf -
vessel_synset_4476617
type - Class

Pipette 75
ml of lysis
buffer into
the bottle
PB1

num(ml-3, 75-2)
dobj(Pipette-1,
ml-3)
prep_of(ml-3,
lysis buffer-5)
det(PB1-9, the-7)
prep_into(Pipette

buffer_synset_145914
49

gloss - "an ionic
compound that resists
changes in its pH"
subClassOf -
compound_synset_146
22879
type - Class

main action:
pipette
main object:
buffer
primary
object:
secondary

ADT_blueprint_pipette_buffer_1.xml

Page 38 of 53

-1, PB1-9) Pipette-
VB 75-CD ml-NN
of-IN buffer-NN
into-IN the-DT
bottle-NN PB1-NN

bottle_synset_284879
8

subClassOf -
vessel_synset_4476617
type - Class

object: bottle

Close the
bottle PB1
by turning
the lid

det(bottle-3, the-
2)
dobj(Close-1,
bottle-3)
prepc_by(Close-1,
turning-5)
det(lid-7, the-6)
dobj(turning-5,
lid-7) Close-VB
the-DT bottle-NN
by-IN turning-VBG
the-DT lid-NN

close_synset_128 gloss - "unite or bring
into contact or bring
together the edges of"
example - string

subClassOf -
join_synset_128369
type - Class

main action:
turn
 main object:
lid
primary
object:
secondary
object:

ADT_blueprint_turn_lid.xml

close_synset_1465564 gloss - "bar access to"
example - string

arricade_synset_14651
61
type - Class

bottle_synset_284879
8

subClassOf -
vessel_synset_4476617
type - Class

lid_synset_362 subClassOf -
cover_synset_44
type - Class

Mix the
contents of
the bottle
PB1 gently
by
inverting
4-6 times

det(contents-3,
the-2)
dobj(Mix-1,
contents-3)
det(bottle-6, the-
5)
prep_of(contents-
3, bottle-6)
advmod(Mix-1,
gently-7)
prepc_by(Mix-1,
inverting-9)
num(times-11, 4-
6-10)
dobj(inverting-9,
times-11) Mix-VB
the-DT contents-
NNS of-IN the-DT
bottle-NN gently-
RB by-IN
inverting-VBG 4-
6-CD times-NNS

mix_synset_181426 type - Class
gloss - "add as an
additional element or
part"
example - short
subClassOf -
add_synset_179714

main action:
invert
main object:
contents
primary
object:
secondary
object:

ADT_blueprint_invert_contents.xml

bottle_synset_284879
8

subClassOf -
vessel_synset_4476617
type - Class

Pour 200
ml of
equilibrati
on buffer
into the
DNA
binding
cartridge

num(ml-3, 200-2)
dobj(Pour-1, ml-3)
prep_of(ml-3,
equilibration
buffer-5)
det(DNA binding
cartridge-8, the-7)
prep_into(Pour-1,
DNA binding
cartridge-8) Pour-
VB 200-CD ml-NN
of-IN buffer-NN
into-IN the-DT
cartridge-NN

cartridge_synset_294
3728

gloss - "a module
designed to be inserted
into a larger piece of
equipment"
example - "he loaded a
cartridge of fresh tape
into the tape deck"
subClassOf -
module_synset_3737
type - Class

main action:
pour
main object:
buffer
primary
object:
secondary
object:
cartridge

ADT_blueprint_pour_buffer.xml

buffer_synset_145914
49

gloss - "an ionic
compound that resists
changes in its pH"
subClassOf -
compound_synset_146
22879
type - Class

Page 39 of 53

Table 4 presents the analysis of instruction completion experiment, pointing to inaccuracies,
explaining them and planning actions for improvement.

Table 4. Error analysis for textual instruction completion experiment (CHEMLAB scenario)

Instruction Result of completion Explanation Possible actions
Open centrifuge main action: open

main object: centrifuge
primary object: -
secondary object: -

Parser annotation was incorrect -
nsubj(centrifuge-2, Open-1)
Open-NNP centrifuge-VBP.
However, we used additional
“always true” statement
dictionary to eliminate as much as
possible such errors. Finally, result
of ADT completion was correct.

Extending “always true”
statement dictionary will partly
eliminate wrong annotation
problems.

Pick a bottle PB1 with e-coli and
put it into centrifuge

main action: pick
main object: bottle PB1
primary object: -
secondary object: centrifuge

Pick action was defined as the
main action, when the “put”
should have been indicated as the
main action.

This problem can be fixed by
adjusting property definition in
the ontology: main action or
supportive action.

Mix the contents of the bottle PB1
gently by inverting 4-6 times

main action: invert
main object: contents
primary object:
secondary object:

The main object of this action in
robotic context shall be “bottle”,
but the “contents” was indicated
as the main object instead. Here
the object is complex, but was
recognized as a simple object. In
this case, the instruction on its
own does not contain sufficient
information.

The problem with complex objects
can be fixed by extracting the
main object with POS pattern NN
IN-of NN. In this case, the
ontology must be queried with
both components of complex
object. Also, adding example
information from a set of
manually annotated ADTs would
help to solve the problem.

6. Discussion
In this deliverable textual completion of instructions from the CHEMLAB and IASSES instructions
sheets has been analyzed. Here we considered “instruction textual completion” as extraction of
symbolic information (from instruction sheets with the support of the ACAT ontology) that is
required for the path towards instruction execution. Specifically, we were considering how to fill in
action name, main object name, primary object name and secondary object name into the Action
Data Tables (ADTs, execution counter-part of the ACAT system).

We were performing textual completion of the instruction sheets transcribed at the level where
most of the action words (verbs) were given at the level where a direct association between the
verb and robotic action is possible. E.g. instructions addressing actions like pick&place (or “place”
in short), open, close, pour have been analyzed. At this level we can obtain a direct association
between the verb in the instruction and the actual robotic action in ACAT project described with
the help of ADTs. Thus we were using not the high level instructions presented in D5.1 (populated
with action words like, harvest, lyse or neutralize), but transcription of the corresponding
scenarios in the previously mentioned lower level terms. We plan to build the ACAT system in such
a way, that first the high level instructions are transcribed in low level terms and ADTs are
associated only to the lower level terms (where the algorithms presented in this deliverables are
operational). The issue of systematic handling of the high to low level transcriptions is planned for
the Year 3 of the project.

Page 40 of 53

The presented instruction completion algorithms show the following performace: from seven
analyzed IASSES instructions, six were interpreted correctly, given the task to fill the existing ADT
structure. Additional two instructions had information which was not possible to assign to the ADT
slots due to the chosen ADT structure (not rich enough). However, we have to start investigation
of the text-to-robotic-code compilation processes based on limited data structures, otherwise the
complexity of the task is not manageable. The one mentioned “true” miss-interpretation was
made for the instruction “repeat steps 4 and 5 for 7 times”. Technically, a parsing error has
occurred. However, even if the parsing were correct, the instruction “repeat” obviously shall be
analyzed as a special case. This is a special type of instruction used for the flow control of other
instructions and can’t be treated the same way as regular instructions directly corresponding to
robotic actions.

From the 20 investigated instructions from the CHEMLAB scenario instruction sheet two were
interpreted in a wrong way. One was interpreted wrongly because of a complex object of a
sentence, where the connection between the “main object” of the robotic action and the “object”
of the sentence in the language syntax was not straightforward. Here both, re-interpretation of
the sentence as well as correction of the object nomenclature in ADTs (re-interpretation from
robotic action side), are possible. In addition, we have a plan to enrich purely syntax-based
mapping of the object roles in the sentence to object roles in ADTs by reasoning based on hand
annotated examples, employing the Markov Logic Networks based methods described in section
4.2.

The other error (wrong main action assigned) occurred due to inaccuracies in action parameter
annotation. This is a technical error. Adjustment of action parameters in the ontology need be
made to avoid such errors in future.

The third case, mentioned among the CHEMLAB scenario instruction interpretation inaccuracies,
was already corrected by including extra rules in addition to the rules used by a standard Stanford
parser. This case needs to be discussed a bit deeper, as parsing errors occurred in both scenarios.
In our work we are using the Stanford parser6 – i.e. statistical dependency parser, which is
reported as one of the fastest (1000 sentences per second) and the most accurate (92.2%
unlabeled attachment score) currently known approaches for parsing English sentences (Chen &
Manning, 2014). Due to the proposed novel technique (based on learning neural network classifier
for use in greedy, transition-based dependency parser) it outperforms baselines of arc-eager and
arc-standard parsers and achieves 2% improvement on both labeled and unlabeled attachment
scores, while running about 20 times faster. Despite all these advantages and superiority over the
other dependency parsing techniques, the Stanford parser still has shortcomings that emerge
mostly because it is not adjusted to any specific domain. The Stanford parser is trained on the

6 http://nlp.stanford.edu/software/lex-parser.shtml

Page 41 of 53

English Penn Treebank7 (Marcus et al., 1993), composed of ~40,000 sentences, taken from the
Wall Street Journal. This newspaper domain is indeed very different from the robotics and
chemistry domains that we are dealing in ACAT project. However, major accuracy problems (in
both, indicating part-of-speech tags and dependency labels) are caused by the sentence structure
itself: i.e. we need to process sentences written in imperative mood, but the Stanford parser is
trained on the sentences in indicative.

The solution of this problem would be to obtain an English “Penn Treebank” data set,
complemented by samples of labeled instruction sentences in imperative mood and do the
training of the parser from scratch. Retraining of the Stanford parser8 should boost the accuracy.
However, how much the accuracy would increase it is hard to say in advance. Some part-of-speech
tagging and dependency parsing problems would be remaining. We have chosen an alternative
solution: to use Stanford parser in the primary step, but to implement the necessary automatic
corrections afterwards. This is a faster and cheaper solution allowing us to attribute more time in
the project to the problems, which are more tightly connected to robotics, as compared to purely
linguistic work: linguistic instruction annotation and parser re-training.

7. Conclusions and future work
Here we have presented our textual instruction sheet completion framework, which reaches into
the compilation process of the instruction sheets. We take a human readable instruction, add
missing information and provide a preliminary Action Data Table (ADT) with filled-in symbolic level
information. Thus, instruction compilation is currently only discussed at the symbolic information
level and additional parts that adds signal (control level) information will be presented in the
following deliverable D3.2.

The designed instruction completion schema and the corresponding ACAT instruction compilation
processes are able to parse an instruction sheet instruction-by-instruction and define the
corresponding sequence of robotic actions as well as roles of objects in those actions. The
approach of combining parsed instruction sheet information with ontology query results seems to
give adequate information for instruction completion. According to evaluation on IASSES and
CHEMLAB scenario instructions, the errors rate is at the level of 10-20% and this is appropriate
given the early research stage in the topic of human-readable instruction compilation for robotic
applications. One cannot expect to perform the conversion of human readable instructions to an
Action Data Table data in a totally error-free way, as this requires very far reaching reasoning
processes, which current artificial reasoning systems cannot yet address. Thus we expect to also
have some residual errors, which will be corrected in the phase of human validation in the ACAT
system.

7 http://www.cis.upenn.edu/~treebank/home.html
8 See “6. Can I train the parser?” in http://nlp.stanford.edu/software/parser-faq.shtml#d

Page 42 of 53

Knowledge of actions and objects participating in those actions can be further improved by more
advanced querying the action ontology, including more details on action execution parameters
(properties, size, quantity, location, etc.). There are possibilities for filling in missing action- or
object information with the most probable action or object instances. However, these are
different problems as compared to the one of instruction-to-ADT-symbolic-part conversion we
were addressing in this deliverable.

In conclusion, the current instruction textual completion status allows us to proceed to the next
step of instruction compilation, by filling the here initialized ADTs with sub-symbolic information,
which would further lead to the execution on a robot.

8. References
Apache UIMA Development Community, UIMA Tutorial and Developers’ Guides
 <http://uima.apache.org/downloads/releaseDocs/2.3.0-incubating/docs/pdf/tutorials_and_users_guides.pdf>, 2009.

Chen, D and Manning, C.D.: A Fast and Accurate Dependency Parser using Neural Networks. Proceedings of Empirical
Methods in Natural Language Processing (EMNLP), 2014.

Ferrucci, David and Lally, Adam: UIMA: an architectural approach to unstructured information processing in the
corporate research environment. Natural Language Engineering, Vol.12, 2004, No. 3-4, pages 327-348.

Hearst, Marti A.: Automatic acquisition of hyponyms from large text corpora. Proceedings of the 14th conference on
Computational linguistics, 1992, pages 539-545.

Jessop, David M and Adams, Sam E and Willighagen, Egon L and Hawizy, Lezan and Murray-Rust, Peter: OSCAR4: a
flexible architecture for chemical text-mining. Journal of Cheminformatics, Vol 3, 2011, No. 1, pages 1-12.

Kotsiantis S. B.: Supervised Machine Learning: A Review of Classification Techniques. Informatica, 2007, 31:249–268.

Kübler, S., McDonald, R. and Nivre, J. Dependency Parsing. Morgan and Claypool, 2009.

de Marneffe, Marie-Catherine and Manning, Christopher D. Stanford Dependencies manual,
<http://nlp.stanford.edu/software/dependencies_manual.pdf>, 2008.

Markievicz, I., Kapočiūtė-Dzikienė, J., Tamošiūnaitė, M., Vitkutė-Adžgauskienė, D.: Action Classification in Action
Ontology Building Using Robot-Specific Texts, Information Technology and Control, Kaunas, 2014 (in review).

Marcus, M.P., Marcinkiewicz, M.A. and Santorini, B.: Building a Large Annotated Corpus of English: The Penn
Treebank. Computational Linguistics, 19 (2), 1993, pages 313-330.

Nyga, D. and Beetz, M. Everything robots always wanted to know about housework (but were afraid to ask. Intelligent
Robots and Systems (IROS), 2012, pages 243-250.

Nyga, D. and Beetz, M. Composite Likelihood Learning for Markov Logic Networks. Submitted for AAAI 2015.

Nyga, D. and Beetz, M. Incorporating Class Taxonomies in Probabilistic Relational Models. Submitted for AAAI 2014.

Toutanova, K and Klein, D and Manning, C and others: Stanford Core NLP. 2013. http://nlp. stanford.
edu/software/corenlp.

http://uima.apache.org/downloads/releaseDocs/2.3.0-incubating/docs/pdf/tutorials_and_users_guides.pdf
http://cs.stanford.edu/~danqi/papers/emnlp2014.pdf
http://nlp.stanford.edu/software/dependencies_manual.pdf
http://nlp/

Page 43 of 53

Appendices

A.1. Documentation of the ACAT instruction completion (ACAT Instruction
Compiler) software

Introduction

The ACAT instruction compiler is designed as a Google Web Toolkit AJAX application. Technologies
used: Google Web Toolkit (GWT), Jena Library, Stanford NLP parser. The main tool functions: ACAT
instruction sheet parsing, ontology querying, and preparation of preliminary ADT structures.

Conceptual model

The ACAT instruction compiler is based on the MVP (Model – View – Presenter) architecture (Fig.
A1). The selected GWT technology allows us to develop and maintain complex AJAX front-end
applications in Java.

Fig. A1. The conceptual MVP model of the ACAT instruction compiler

All instruction sheets sentences are analyzed with asynchronous remote procedure calls from the
client to the server side. Additional libraries (Jena ontology querying library, Stanford NLP parser,
etc.) and algorithms implementation from shared package are used in both client and server sides.
System class diagram is presented in two parts, for client and server packages (Fig. A2, Fig. A3).

Page 44 of 53

Fig. A2. Class diagram for ACAT instruction compiler client side

Page 45 of 53

Fig. A3. Class diagram for ACAT instruction compiler server side

User interface

The user interface of the ACAT instruction compiler is built using standard GWT UI widgets and
panels. It consists of (Fig. A4): dialog window for entering the instruction to be analyzed and
button, starting the analysis/compilation.

Page 46 of 53

Fig. A4. User interface of the ACAT instruction compiler

Examples and screenshots
The ACAT action ontology, queried by the ACAT instruction compiler, is structured by identifying
action and object descriptions from the action ontology. Main action, main object, primary object
and secondary object are defined using syntactic structure of the sentence and dependency
relations between root verb (action) and other sentence components. It also contains links to the
Action Data Table (ADT) data, structured as defined in D2.1.

The compiler execution starts with entering the instruction in the compiler dialog window. The
first step of the compiler execution results with the parse data for the instruction (Fig. A5).

Fig. A5. Example of instruction parsing results

 An example of ontology query results using the instruction compiler tool is presented in Fig. A6.

Page 47 of 53

Fig. A6. Excerpt of results of an Action ontology query

Wherever more detailed action data is present in the ontology (ADT data), detailed action
sequence is returned by the compiler (Fig. A7).

Fig. A7. Results for a detailed action sequence

Page 48 of 53

A.2. Set of instructions for instruction completion experiments for IASSES
scenario

Instructions for “Rotor Assembly using the KUKA LWR”

(https://www.youtube.com/watch?v=gcGez97HhGI&list=UUDUps4-IXGwAUYqZ46BVoew, manual

transcription):

1. Take one metal ring from the top of ring stack and put it into the ring dispenser.

2. Grasp the ring from the side at the jaw of the ring dispenser and drop it into a cylindrical

holder standing on the station.

3. Take the rotor shaft from the fixture and insert it into the cylindrical holder.

4. Turn the rotor shaft so that the magnet hole is in front of the robot

5. Pick a magnet from the magnet dispenser and insert it into the magnet hole that is directly

in front of the robot.

6. Repeat steps 4 and 5 for 7 times.

7. Pick a rotor cap from the fixture on the robot platform.

8. Put the cap on the rotor shaft.

9. Adjust the cap so that it is aligned to the rotor axis.

10. Operate the press (not shown in the movie).

11. Take the rotor from the press, invert it and place it on the fixture on the robot platform.

https://www.youtube.com/watch?v=gcGez97HhGI&list=UUDUps4-IXGwAUYqZ46BVoew

Page 49 of 53

A.3. Set of instructions for instruction completion experiments for CHEMLAB
scenario

Instructions for “Plasmid DNA Extraction (Megaprep)” (https://www.youtube.com/watch?v=xcPlV-
xMdVM, manual transcription):

1) Open centrifuge.

2) Pour suspension of e-coli from a flask into a plastic bottle PB1.

3) Turn the lid to cover the bottle PB1.

5) Pick a bottle PB1 with e-coli and put it into centrifuge.

6) Close the lid of centrifuge.

7) Start centrifuge by pressing a button But1.

8) Wait for 10 minutes.

9) Stop centrifuge by pressing button But1.

10) Open the lid of the centrifuge.

11) Take out the bottle PB1 of centrifuge (and put it on fixature).

12) Open the plastic bottle PB1 PB1.

13) Pour the liquid out of the bottle PB1 into a flask.

14) Pipette 15 ml of buffer R3 into bottle PB1.

15) Close the bottle PB1 again.

16) Shake the bottle PB1 by holding against the shaking device.

17) Open the bottle PB1.

18) Open the bottle with lysis buffer PB2.

19) Pipette 75 ml of lysis buffer into the bottle PB1.

20) Close the bottle PB1 by turning the lid.

21) Mix the contents of the bottle PB1 gently by inverting 4-6 times.

22) Open the bottle PB1.

https://www.youtube.com/watch?v=xcPlV-xMdVM
https://www.youtube.com/watch?v=xcPlV-xMdVM

Page 50 of 53

23) Open the bottle PB3 with precipitation buffer N3.

23) pour 75 ml of the precipitation buffer N3 into plastic bottle PB1.

24) Close the bottle PB1.

25) Mix by inverting PB1 4-6 times.

26) Put the bottle PB1 into centrifuge.

27) Close the lid of the centrifuge.

28) Start centrifuge.

29) Wait for 15 minutes.

30) Stop centrifuge.

31) Open the lid.

32) Take out the bottle PB1 and put it on the table.

33) Open the bottle PB1.

34) Pour the contents of PB1 into lysate filtration cartridge attached on the glass bottle GB1
slowly.

35) Wait until the liquid has drained into the bottle GB1.

36) put DNA binding cartridge on the different bottle GB2.

37) open the bottle with equilibration buffer.

38) Pour 200 ml of equilibration buffer into the DNA binding cartridge.

39) Wait until the liquid has drained from the cartridge.

40) Take the lysate filtration cartridge off the bottle GB1.

41) Pour the contents of the bottle with lysate GB1 into the DNA binding cartridge.

42) Wait until the liquid has drained.

43) Open the bottle with wash buffer PB4.

44) Pour 550 wash buffer W8 into the DNA binding cartridge.

Page 51 of 53

45) Wait until the liquid has drained.

46) Unscrew the DNA binding cartridge from the full bottle GB2 and screw it on an empty bottle
GB3.

47) Pour the contents of the full bottle GB2 into a plastic bottle PB5.

47a) Cover the bottle PB5 with a lid.

48) Unscrew the bottle with elution buffer PB6.

49) Add 120 ml of elution buffer E4 to the cartridge.

50) Wait until it had drained into the bottle.

51) Unscrew the cartridge.

56) Unscrew the plastic bottle.

56a) Pour the contents of the bottle with the elution buffer into the plastic bottle PB5.

57) Pipette 85 ml isopropanol into the plastic bottle PB5.

58) Screw the lid on a plastic bottle PB5.

59) Mix by inverting bottle PB5 several times.

60) Put the bottle PB5 into centrifuge.

61) Close the lid of the centrifuge.

62) Start the centrifuge.

63) Wait for 30 min.

64) Stop the centrifuge.

65) Open the lid of the centrifuge.

66) Pick the bottle PB5 from the centrifuge and put it on the table.

67) Unscrew the bottle PB5.

68) Pour the liquid from the bottle PB5 into a glass vessel carefully.

69) Pipette 70% ethanol into the plastic bottle PB5 onto the DNA pallet attached to the bottom.

70) Open test tube TT1 standing on a holder (New class “hand only with grasping” plus pick and
place)

Page 52 of 53

71) Collect the solution of the plastic bottle PB5 with the pipette and put it into the test tube TT1.

72) Click on the lid on the test tube TT1.

73) Put the test tube TT1 into the centrifuge.

74) Close the centrifuge.

75) Start the centrifuge

76) Wait for 10 minutes

77) Stop the centrifuge.

78) Open the lid of the centrifuge.

79) Take out the test tube TT1 off the centrifuge.

80) Pour out the liquid off the test tube TT1 into a glass vessel.

81) Put a test tube TT1 onto a holder.

82) Cover the holder with the lid.

83) Wait for 10 minutes.

84) Open the test tube with TE buffer TT2.

85) Pipette 1 ml of TE buffer from TT2 into the test tube TT1.

86) Close the test tube TT1.

87) Put the test tube onto the fixature.

Page 53 of 53

A.4. Objects role definition in Action Data Tables

Hand: The hand (always present in an action).

Tool: The entity grasped by the hand to perform an action instead of the hand (not always present).

Main Object (MO): The object which is first touched by hand/tool (always present).

Primary object=Source (PO): The object which is first touched/untouched by the main object (not
always present).

Secondary object=Target (SO): The object which is second touched/untouched by the main object
(not always present).

	1. Executive summary
	2. Introduction
	3. Overview of the textual completion procedure
	4. Detailed method description
	4.1. Preprocessing and dependency parsing
	4.2. Advanced instruction text analysis
	4.3. Action ontology
	4.4. Filling in missing information with knowledge from ACAT action ontology
	5. Textual instruction completion experiments for ACAT project scenarios
	5.1. IASSES scenario
	5.2. CHEMLAB scenario
	6. Discussion
	7. Conclusions and future work
	8. References
	Appendices
	A.1. Documentation of the ACAT instruction completion (ACAT Instruction Compiler) software
	Introduction
	Conceptual model
	User interface
	Examples and screenshots

	A.2. Set of instructions for instruction completion experiments for IASSES scenario
	A.3. Set of instructions for instruction completion experiments for CHEMLAB scenario
	A.4. Objects role definition in Action Data Tables

