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1. Executive summary 
 
This document is the first version of deliverable D3.1 and we are planning to provide an update in 
about 2 months to show more results on the two scenarios of the ACAT project. 

In the ACAT project we are considering to perform human readable instruction compilation into a 
robot executable instruction sequence by transforming the human readable instruction into a 
sequence of Action Data Tables (ADTs, the format introduced in the deliverable D2.1).  

The processes we are implementing for compilation in the ACAT project consist of the following 
steps: 

1) Robot executable action sequence definition (i.e., ADT sequence definition); 
2) ADT filling with symbolic information from textual resources and ACAT action ontology; 
3) ADT filling with sub-symbolic (control level) information based on previous robot 

experience (previously filled ADTs); 
4) Human validation and error correction of the automatically filled ADTs as well as entering 

of the missing information into the ADTs.  

Here we present the by-now designed algorithms and related tools for the filling-in of the missing 
symbolic information (steps 1 and 2 from the list above) into ADTs. Other aspects (the other 
steps) will be covered by deliverables D3.2 as well as in system demonstrators (D5.4 and D5.7). 

The algorithms presented here cover both, parsing of the available instructions and extraction of 
missing (or more specific) symbolic information, for each action and its corresponding 
environment by querying the ACAT action ontology. As action sequence definition is our first step 
in the compilation process, to make the presentation consistent, we include action sequencing 
already into this deliverable, which normally would belong to the next deliverable D3.2.  
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2. Introduction 
 
The process of textual completion of instruction sheets is aimed at creating an instruction 

representation that provides textual (symbolic) information required for the planning and 

execution process on a robot. Specifically, we are considering here the process of converting 

natural language instruction into a sequence of Action Data Tables (ADTs, data structure for robot 

action data recording and execution in ACAT project, see D2.1 for details). In the textual 

completion phase the ADTs are pre-filled with symbolic information (action and object names, 

symbolic object properties). Filling of the signal level information into ADTs is not discussed here, 

but will be discussed in deliverable D3.2 (Compilation of instructions into action sequencing 

protocols.) at month 24. The dividing line between D3.1 and D3.2 is hard to draw. Given the ACAT 

data structure based on ADTs we have chosen in D2.1, it was natural to include into D3.1 the 

entire process for symbolic filling of the ADTs which already includes action sequencing (a topic 

from D3.2). However, the time was too short to develop the project up to that point in month 18, 

thus we will re-submit an update of D3.1 in month 21. Here is the version presenting 

achievements of the project until month 18.  

 

A simple example of an instruction where textual completion is needed is "take a rotor cap and 

place it on robot platform". Here one needs to replace the pronoun "it" with the object "rotor cap" 

such that it is clear that the object which needs placing on the robot platform is the rotor cap. 

Such simple re-substitutions might be addressed using "pure" text analytics techniques (specificity 

of robotics does not need to be taken into account) and are performed in the "pre-processing" 

step of the textual completion procedure discussed in this deliverable.  

 

The other issue on textual completion that is much wider discussed in this deliverable is very 

tightly related to robotics. Not every verb in the instruction sheet is directly linked to robotic 

actions. E.g. consider the verbs "neutralize" or "harvest" (which cannot be directly linked to 

robotic actions), against "pick up" or "screw" (which can be directly linked to robotic actions). Let 

us analyze an instruction "Harvest the E.Coli by centrifugation at 6000g for 10 minutes at 4°C". 

Ignoring the details like speed or duration of centrifugation for now, first we need to tell what 

executable robot action sequence would correspond to the verbal instruction "harvest E.Coli by 
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centrifugation", e.g.: locate centrifuge, open centrifuge, pick up test tube with E.Coli, and place it 

into centrifuge, etc.  Linking of action verbs to action sequences executable by a robot in ACAT is 

implemented through action ontology. Action verbs in the ontology are divided into action classes 

where one class has the same sequence of so called action primitives (as described in D2.1 

Chapter 4). Thus, textual completion of an instruction takes an instruction in natural language and 

transforms into a sequence of action primitives based on action classes. 

 

For the purpose of textual completion of instruction sheets, the following actions are repeated for 

every instruction in the instruction sheet:  

• textual analysis (parsing) of the instruction is done in order to structure the information in 

the instruction and to identify the action verbs,  

• corresponding action classes are identified in the ACAT ontology and the structure of the 

instructions is defined,  

• finally detailed background information for each action is filled into the instruction from 

the parse data and from the action ontology. 

The goal of this document is to describe in detail the main algorithms and corresponding tools for 
textual instruction sheet completion as well as the results obtained for the instruction sheets from 
two ACAT scenarios: IASSES and CHEMLAB. In the Appendixes we are giving Documentation of the 
ACAT instruction completion (instruction compiler) software. 

 

3. Overview of the textual completion procedure 
 
An algorithm for textual completion of instruction sheets and insertion of relevant background 

information has been developed.  

The algorithm is based on the following techniques and resources: 

1. Pre-processing and Parsing of instruction texts in order to identify action verbs and related 

background structure elements. 

a. Semi-manually built restricted dictionary for a topical domain is used for better 

parsing quality. 
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Fig.1. Algorithm for filling in the missing information in instruction sheets 

 
 

2. SPARQL queries to the corresponding action ontology in order to extract action background 

structure for a specific action, identified in the process of parsing the instruction sheets. 

a. Action ontologies are built for specific topical domains (namely, IASSES and 

CHEMLAB) from domain-specific corpus texts, accumulated in the ACAT Project 

(see WP1, WP2). 
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3. For each action, identified in the instruction sheet - matching of the action structure, 

extracted from the action ontology, to the instruction parse-tree in order to: 

a. Assign semantic roles to the action background elements, identified in instruction 

parse-trees; 

b. Determine required action background elements, missing from the instruction 

text. 

4. SPARQL queries to the corresponding action ontology in order to extract possible 

candidates for filling of the missing information (missing action background elements) in 

the instruction sheet. 

5. The resulting action structure, built by combining instruction parsing and action ontology 

querying, is stored as an instance in the action ontology of the corresponding domain. 

Fig.1 presents a more detailed view of the above described algorithm. 

4. Detailed method description 
 

This chapter is dedicated to a detailed description of the methods applied in the main two steps of 

textual instruction sheet completion: 

1. Preprocessing and dependency parsing. 

2. Filling-in missing instruction information with knowledge from ontology. 

4.1. Preprocessing and dependency parsing 
 
Parsing (synonymously: syntactic analysis) is the process of analyzing a string of symbols, either in 

natural language or in computer languages, according to the rules of a formal grammar. In our 

case the formal grammar is a dependency grammar (Kübler et al, 2009), where all dependency 

relations between syntactic units (words) are either directly or indirectly dependent on a verb as 

the structural center (core) of each clause.  

 

http://en.wikipedia.org/wiki/String_%28computer_science%29
http://en.wikipedia.org/wiki/Natural_language
http://en.wikipedia.org/wiki/Computer_languages
http://en.wikipedia.org/wiki/Formal_grammar
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Fig.2. Generalized block schema of the instruction parsing system 

Indeed an interpretation of the dependency parsing relations serves as the first step in the 

clarification and formalization process of an instruction written in a human language. The 

recognized core verb itself matches the action, which a robot has to perform and different types of 

dependency relations reveal how objects (and even their features as color, shape, etc.) are 

involved into that particular action. E.g. locate is the main verb in locate a rotor cap on robot 

platform clause; direct object (dobj dependency type) relation between locate and rotor cap 

indicates “what to locate”; prepositional modifier “on” (prep_on dependency type) between 

locate and robot platform – “where to locate”.  

The instruction parsing system, we are describing in this chapter, was implemented using Apache 

UIMA software framework (Apache UIMA Development Community, 2009). Next we will give a 

brief description of each block of this system. The generalized schema for this is presented in Fig.2:  

• Read all instructions. Instruction parsing is an iterative process, performed instruction 

after instruction. Assuming that each instruction corresponds only to one sentence, we 

used embedded Apache UIMA sentence tokenizer to split all the data into the sentence 

units in a given instruction sheet.  
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<words> 
        <word>rotor cap</word> 
        <word>robot platform</word> 
        <word>bacterial pellet</word> 
        <word>bacterial cells</word> 
        <word>lysis buffer</word> 
        <word>room temperature</word> 
        <word>precipitation buffer</word> 
        <word>gigaprep lysate filtration cartridge</word> 
        <word>equilibration buffer</word> 
        <word>DNA binding cartridge</word> 
        <word>wash buffer</word> 
        <word>elution buffer</word> 
        <word>centrifuge bottle</word> 
        <word>DNA pellet</word> 
        <word>TE buffer</word> 
        <word>plasmid DNA</word> 
        ... 

Fig.3. Snippet from the XML file containing complex objects 
 

 
• Pre-processing. To avoid some dependency parsing errors, which may be crucial in the 

further system compilation steps (when linking with the ontology information, creating 

sequences of action categories, etc.), dependency parsing was complemented with the 

following capabilities: 

- Complex objects mapping to pseudo simple. In order to treat complex objects (such 

as rotor cap, robot platform or DNA binding cartridge) as indivisible units, they were 

replaced with the appropriate pseudo simple objects, i.e. leaving only the last word 

instead of the entire collocation (e.g. rotor cap → cap, DNA binding cartridge → 

cartridge, etc.). This replacement protects sentences from redundant and often 

erroneous dependency relations. XML file (dictionary, see the snippet in Fig.3) helped 

in recognizing complex objects in the text. The dictionary was built semi-manually 

extracting all complex objects from predefined instruction sheets for the two scenarios 

of ACAT. We kept track both of all mapped complex words and their positions in the 

sentence to avoid possible ambiguity between equal pseudo simple and simple words 

(e.g. replaced rotor cap → cap). E.g. take a rotor cap and place it on robot platform 

was replaced with take a cap and place it on platform, memorizing that the 3rd word 

cap is actually rotor cap and the 8th word platform is robot platform.  
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- Anaphora resolution problem solving. Anaphora resolution block is responsible for 

coping with the pronouns – i.e. indirectly expressed objects or subjects. If the part-of-

speech of a word indicated a personal/possessive pronoun/wh-pronoun1, it had to be 

replaced with the appropriate noun. The noun was determined by searching back in 

the sentence for the first dependent with the dependency label indicating 

direct/indirect/of preposition object or (passive) nominal/clausal subject. The part-of-

speech tags and the dependency relations were determined with the Stanford parser 

(Marneffe and Manning, 2008), incorporated into our instruction parsing system. If 

anaphora resolution problem solving involved the previously replaced complex 

objects, information about those replacements was taken into account. E.g. take a cap 

and place it on platform was replaced with take a cap and place cap on platform. Since 

it refers to the complex object rotor cap (replaced by pseudo cap in the previous 

block), this mapping was memorized as well: i.e. 6th word is rotor cap.    
 

 
 
Fig.4. Grey blocks indicate words in the parsed sentence (determiners and punctuation marks 
are ignored); arrows – dependency relations and their labels; dashed blocks – mapped 
information. E.g. place is node’s take dependent, but node’s platform governor; core verb take 
is a ROOT node dependent.  

 

• Dependency parsing. Dependency parsing was done using the Stanford parser, which may 

determine 52 fine grained dependencies, referring to different relations between the 

words. We used a collapsed structure which ignores punctuation but involves prepositions 

                                                           
1 Wh-pronoun – a pronoun, which is spelt with an initial wh: how, what, which, where, when, who, whom, whose, however, 
whatever, etc. Wh-pronouns are either interrogative pronouns or relative pronouns. More information: 
http://www.phon.ucl.ac.uk/home/dick/enc2010/frames/frameset.htm 

    root 

dobj prep_on 

conj_and dobj 

take 

cap place 

cap platform 

rotor cap 

rotor cap robot platform 
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and conjunctions into dependency labels. The example of the parsed sentence take a rotor 

cap and place it on robot platform is presented in Fig.4.  

• Post-processing. During this phase information about the mapped objects is restored 

(considering their replacements and positions in the sentences) and inserted into the text. 

Annotations are stored in XML file (see the example in Figure 5); few PrintScreens from 

CAS Visual Debugger are presented in Fig.6 – Fig.8 as well.  

<?xml version="1.0" encoding="UTF-8"?> 
<xmi:XMI xmlns:cas="http:///uima/cas.ecore" xmlns:xmi="http://www.omg.org/XMI" xmlns:tcas="http:///uima/tcas.ecore" 
xmlns:annotation="http:///org/apache/uima/annotation.ecore" xmi:version="2.0"><cas:NULL xmi:id="0"/> 
<cas:Sofa xmi:id="1" sofaNum="1" sofaID="_InitialView" mimeType="text" sofaString="Take a rotor cap and place it on robot platform. Stop conveyor."/> 
<tcas:DocumentAnnotation xmi:id="8" sofa="1" begin="0" end="63" language="en"/> 
    <annotation:TokenAnnotation xmi:id="13" begin="0" end="4" sStart="true" sEnd="false" Word="Take" Poz="1" POS="VB" dLabel="root" Gov="0"/> 
     <annotation:TokenAnnotation xmi:id="24" begin="5" end="6" sStart="false" sEnd="false" Word="a" Poz="2" POS="DT" dLabel="det" Gov="6"/> 
     <annotation:TokenAnnotation xmi:id="35" begin="7" end="16" sStart="false" sEnd="false" Word="rotor cap" Poz="3" POS="NN" dLabel="nn" 
Gov="6"/> 
     <annotation:TokenAnnotation xmi:id="46" begin="17" end="20" sStart="false" sEnd="false" Word="and" Poz="4" POS="CC" dLabel="" Gov="-1"/> 
     <annotation:TokenAnnotation xmi:id="57" begin="21" end="26" sStart="false" sEnd="false" Word="place" Poz="5" POS="NN" dLabel="conj_and" 
Gov="3"/> 
     <annotation:TokenAnnotation xmi:id="68" begin="27" end="29" sStart="false" sEnd="false" Word="rotor cap" Poz="6" POS="NN" dLabel="dobj" 
Gov="1"/> 
     <annotation:TokenAnnotation xmi:id="79" begin="30" end="32" sStart="false" sEnd="false" Word="on" Poz="7" POS="IN" dLabel="" Gov="-1"/> 
     <annotation:TokenAnnotation xmi:id="90" begin="33" end="47" sStart="false" sEnd="false" Word="robot platform" Poz="8" POS="NN" 
dLabel="prep_on" Gov="6"/> 
     <annotation:TokenAnnotation xmi:id="101" begin="47" end="48" sStart="false" sEnd="true" Word="." Poz="9" POS="." dLabel="" Gov="-1"/> 
     <annotation:TokenAnnotation xmi:id="112" begin="49" end="53" sStart="true" sEnd="false" Word="Stop" Poz="1" POS="VB" dLabel="root" Gov="0"/> 
     <annotation:TokenAnnotation xmi:id="123" begin="54" end="62" sStart="false" sEnd="false" Word="conveyor" Poz="2" POS="NN" dLabel="dobj" 
Gov="1"/> 
     <annotation:TokenAnnotation xmi:id="134" begin="62" end="63" sStart="false" sEnd="true" Word="." Poz="3" POS="." dLabel="" Gov="-1"/> 
<cas:View sofa="1" members="8 13 24 35 46 57 68 79 90 101 112 123 134"/> 
</xmi:XMI> 
<annotation:TokenAnnotation xmi:id="13" 
     begin="0" ← symbol in the text indicating the beginning of this word 
     end="4" ← symbol in the text indicating the end of this word 
     sStart="true" ← identifier indicating the beginning of the sentence 
     sEnd="false" ← identifier indicating the end of the sentence 
     Word="Take" ← analyzed word itself 
     Poz="1" ← word position in the sentence 
     POS="VB" ← part-of-speech tag 
     dLabel="root" ← dependency label 
Gov="0" ← governor node position in the text 
/>  

 
Fig.5. XML file (above) and explanations for the inserted annotations for the line: 
<annotation:TokenAnnotation xmi:id="13" begin="0" end="4" sStart="true" sEnd="false" 
Word="Take" Poz="1" POS="VB" dLabel="root" Gov="0"/> (below). 
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Fig.6. Detailed annotations for it 

 

 

Fig.7. Detailed annotations for robot platform 

Annotations for word it in the text 
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Fig.8. Detailed annotations for Stop 

4.2. Advanced instruction text analysis 
 
In [Nyga and Beetz 2012] we have proposed PRAC (Probabilistic Robot Action Cores), a novel 
approach to the problem of action-specific knowledge processing, representation and acquisition 
by autonomous robots performing everyday activities. PRAC is a probabilistic first-order 
knowledge base which can be acquired from annotated natural language text. In [Nyga and Beetz 
2012] we have also discussed how to address the problems of incompleteness, underspecification 
and ambiguity of naturalistic action specifications and how PRAC models can tackle those. In our 
recent research PRAC and its underlying formal framework (Markov Logic Networks, MLN) have 
been extended into two different directions: 

1. In [Nyga and Beetz 2015, submitted] composite likelihood learning (CLL) is described. CLL is a 
method for parameter estimation in Markov logic networks, which is a generalization of both 
likelihood and pseudo-likelihood learning allowing for a  tradeoff between computational costs 
and learning accuracy. 

2. In [Nyga and Beetz 2014, submitted] we propose an extension of MLNs for enabling efficient 
incorporation of concept taxonomies in probabilistic relational models. By allowing evidence 
ground atoms taking real-valued degrees of truth, the proposed knowledge representation 
formalism is capable of compactly covering semantic similarity of concepts given by a class 
taxonomy and hence allows efficient reasoning about concepts not contained in the model. While 
in classical Markov logic, clique potentials in the ground Markov random field take discrete binary 
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values that are determined by first-order logical formulas, our approach employs a fuzzy logic 
semantics for each of the feature functions. This makes the proposed method indeed a 
generalization of classical Markov logic being fully compatible with its original semantics. 

Another focus of our work in the area of text analysis, annotation, and completion was on the 
automated detection and classification of causal relations in texts from the CHEMLAB domain. We 
use lexico-syntactic templates for relation extraction, which are in the tradition of Hearst patterns 
[Hearst 1992]. The input text is preprocessed and has both standard POS tags and domain-specific 
labels (e.g., a label for chemical substances). It also includes syntactic labels for phrase types like 
NP etc. For the purpose of linguistic preprocessing (tokenization, POS tagging, and syntactic 
analysis) we used components of the Stanford CoreNLP framework [Toutanova 2013]. For some 
technical terms of the chemistry domain, especially complicated names of chemical substances 
(e.g.,  rac-N-[(3-methylamino-1-phenyl)propyl]-5-(dimethylamino)-1-naphthale nesulfonamide), it 
turned out that the error rate of the preprocessing pipeline could be reduced significantly by 
employing a domain-specific semantic annotation tool, the OSCAR4 tagger [Jessop 2011]. 

 
Fig. 9.  Architecture overview of the causal relation extraction engine. 

 

The basic structure of an annotation pattern is: 

<type>   /arg1 ...   /span   ...   /arg2   ... 

where "type" is the label of the specific causal relation (e.g., CAUSAL_INSTRUMENT_UsedFor}) 
"/arg1" and "/arg1" are the arguments of the relation, and "/span" is the connective. Our 
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implementation of the pattern interpreter supports the usual operators for the specification of 
regular expressions, e.g. the Kleene star, optionality of subpatterns, and XOR. 

The following example pattern matches passive clauses which include the lexical pattern {\em 
used as} either with or without an optional adverb: 

The nitrogen was used as carrier gas 

The nitrogen was permanently used as carrier gas 

Pattern:  [NP]   [VBD]   [RB]?    used as    [NP] 

Our extraction engine DiscoRelax has been implemented within the UIMA framework [Ferrucci 
2004] which has, amongst others, the advantage that it can be easily integrated with other 
annotators. The overall architecture is given in Fig 9. 

4.3. Filling in missing information with knowledge from ACAT action 
ontology 

 
In the process of instruction completion, the ACAT ontology is queried for the following purposes: 

• to extract action structure for known actions, 
• to get detailed information for an action background. 

By the structured conceptual view of stored data, ACAT ontology is used in describing the class 
hierarchy (also called a taxonomy) of the concepts, concept properties and allows filling missing 
information (e.g. which object can be used with a given action) by using known relationships.  
ACAT ontology is queried to extract action structure for known actions and to get detailed 
information (as far as possible) for an action background. 

Fig. 10 presents the conceptual model of knowledge extraction by querying ACAT action ontology. 
Each query makes use of the instruction parsing results – recognized core verbs (actions that the 
robot has to perform) and action background. 
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Fig. 10. Knowledge extraction by querying the ACAT ontology 

 
 

Ontology querying starts from gathering the results of syntax dependency and POS parsing 
(See 4.1. Preprocessing and dependency parsing). Verbs are extracted from each parsed 
sentence. Each verb corresponds to an action, that robot has to perform. At the next step, it is 
necessary to classify each verb to a corresponding action class. A pre-defined set of action 
classes was described in the ACAT Deliverable D2.1: tool action, tool with movement action, 
homing action, null-action, hand-only action, handling action, pick and place action.  

By querying the ontology using SPARQL queries we can define the action class for each action, 
and, furthermore, extract information on the action structure - action steps (action primitives). 
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An example of a SPARQL query for defining the action class for an action "harvest" is given in 
Fig. 11.  

 
Fig. 11. Example: SPARQL query for action class extraction 

 
If the ACAT ontology contains only one instance of the action verb, a simple SPARQL query for 
the action class extraction is used. However, if the action ontology contains multiple instances 
of a particular verb with diversified action class hierarchy, it is impossible to rely only on 
ontology queries.  

In action class disambiguation tasks, action frequency information from a domain specific 
corpus is used. Along with common action properties, each action in the ACAT ontology 
contains the calculated action frequency for a given action category in its feature set. SPARQL 
query results are sorted in descending order by action instance frequency for separate action 
categories.  

Action category disambiguation results can be also improved by applying action classification 
by its context (Markievicz et al, 2014). The classification by context approach is used in 
unrecognized (unclassified) action instance assignment to the appropriate action class. The 
problem is solved as the text classification task, where appropriate verb contexts are treated 
as classification instances. Action contexts are classified using Support Vector Machine (SVM) 
algorithm with the Naïve Bayes (NB) as the baseline (Kotsiantis , 2009). 

After defining the action class and, thus, knowing the structure of the action background, the 
next step of instruction sheet knowledge processing is to fill-in information for each action 
background object. Action objects and their relations to main action (roles) need to be 
defined. Dependency parsing data is used for describing environment objects syntactic roles. 
Additional action object properties, which are not mentioned explicitly in the instruction 
sheets, can be obtained by querying the ACAT ontology using SPARQL queries (Fig. 12). If an 
action background object is not mentioned in the instruction sheet, there is the possibility to 
query the most probable action object from the list of objects, included in ACAT ontology. 

 Query: 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX owl: <http://www.w3.org/2002/07/owl#> 
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 
PREFIX corpus_ontology: <http://www.semanticweb.org/user/ontologies/2013/11/robot_ontology#> 
 
SELECT DISTINCT ?action ?property ?object 
 WHERE {?class rdfs:subClassOf* corpus_ontology:ACTION. 
        ?action ?property ?object. 
        FILTER(?action=corpus_ontology:harvest) 
       } 
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Fig. 12. SPARQL query for describing properties of action object. 

 
All the data obtained from parsed instruction sheets and ACAT ontology queries is structured and 
included in the descriptions of separate actions steps (action primitives), predefined for each 
action class. For example, if an action PUT belongs to the PICK AND PLACE action class, the 
following action primitives are defined: 1 – locate object, 2 – pick up object from source object, 3 – 
put down object, 4 – put down on target object.  

A preliminary action data table (ADT), filled out with data from instruction sheets and ACAT 
ontology queries, is constructed for each action primitive. Usually, it contains only the predefined 
action class and action background objects involved (Fig. 13). This preliminary ADT can later be 
updated with detailed experimental or observation data.  

 
 

Fig. 13. Example of an ADT structure  

Query: 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX owl: <http://www.w3.org/2002/07/owl#> 
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 
PREFIX corpus_ontology: <http://www.semanticweb.org/user/ontologies/2013/11/robot_ontology#> 
 
SELECT DISTINCT ?action_object ?property ?object 
 WHERE {?action_object ?property ?object. 
        FILTER(?action_object=corpus_ontology:cell) 
       } 
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5. Instruction completion application to ACAT project scenarios 
For both scenarios, IASSES and CHEMLAB, the ACAT instruction completion application gives 
results of the same structure:  

- syntactic analysis results with action verbs and their dependency with action background 
objects; 

- ACAT ontology query results with identified action categories and defined action steps (action 
primitives), predefined for each action category; 

- ACAT ontology query results with identified action background objects and their properties; 
- detailed instruction steps, filled-out with data, collected from instruction sheet parsing and 

ontology querying results; 
- preliminary ADT’s for each action step. 

Instruction parsing and action step detailing algorithms are the same for both scenarios. The 
difference is in the knowledge base, which is used for extracting information needed for 
instruction completion. Each scenario has a different ontology, built from domain-specific texts.  

5.1. Application to IASSES scenario 
 
The ACAT instruction completion application execution in IASSES scenario is demonstrated for an 
instruction: “Put rotor cap on conveyor” (Fig. 14). 

 
 

Fig. 14. Example of text parsing results for IASSES scenario 
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Instruction parsing starts from complex object mapping into simple ones. In this case, object rotor 
cap is mapped to simple cap (Fig. 14 – “Transformed sentence” row information).  

In the next step, POS and dependency parsing is executed for the instruction sentence. Each word 
in the instruction sentence is described by its part of speech and also dependencies between the 
words are defined (Fig. 14). 

Sentence “Put rotor cap on conveyor” POS annotation (“POS tags” row information in Fig. 14) 
results: put – verb, base form (VB), cap – noun, singular (NN), on – preposition (IN), conveyor – 
noun, singular (NN).2  

Dependency parsing annotation results are presented in “Parsed info” rows (Fig 14): dobj(put-1, 
rotor cap-2) means, that the rotor cap is the direct object of the action put, prep_on(put-1, 
conveyor-4) – the target object (place) of the action put is the  conveyor. We used a collapsed 
dependencies model, which attaches all preposition to a basic prepositional modifier role.3   

In case the analyzed sentence is more complex and contains information not only about actions 
and objects, then verb and noun dependency analysis results are filtered (“Parsed verbs and 
objects” rows) – this information is used in ontology querying step.  

After saving the parsing results to an application internal database, the ontology querying phase 
begins. Ontology querying results are grouped into ACTION-INFORMATION and OBJECT-
INFORMATION logical groups (Fig 15). 

 
 

Fig. 15. Sample ontology querying results for IASSES scenario 

                                                           
2 Full list of Penn Treebank POS tags, used in Stanford NLP project: 
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html 
3 Full list of dependency types, used in Stanford NLP project: http://nlp.stanford.edu/software/dependencies_manual.pdf 
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For each action verb in a sentence, an ontology SPARQL query is build. All corresponding verb 
instances in the ontology, belonging to the ACTION category, are selected. In this example, we 
locate an action, belonging to the  PICK_AND_PLACE category (rdf:type – PICK_AND_PLACE). It is 
defined as ontology entity (owl:NamedIndividual). Query results also describe that the action put 
is similar to actions place and move (owl:sameAs – move, place). There are also predefined steps 
of the PICK_AND_PLACE action category: first (:action1) – locate, second - (:action1) pick_up, third 
(:action3) – put_down. The target object (:has_targer_object) of thr put action is the rotor_cap. 
Ontology querying results also include synonyms, both for actions and for action background 
elements (objects), wherever possible. In the example (Fig. 16), rotor cap is defined as an objects 
similar (owl:sameAs) to cap. It belongs to the ACTION_OBJECT category and is defined as ontology 
entity (owl:NamedIndividual). 

 
 

Fig. 16. Sample ontology querying results for IASSES scenario 

In the example, the following action steps (action primitives) are defined (Fig. 17): 1 – locate cap, 2 
– pick up cap, 3 – put down cap on conveyor. The sequence of action steps is defined from the 
query results of the action information (Fig. 15). For each step, a corresponding preliminary Action 
Data Table (ADT) is filled-out, including information about action background objects, extracted 
both from parse data and ontology. 

 
 

Fig. 17. Defined action steps (action primitives) in the IASSES scenario example. If there is no 
possibility to define some action objects or their properties, the “?” mark is used 

The instruction compiler for the IASSES scenario was tested in a demo-setup at AAU with the Little 
Helper 4 robot. Fig. 18 and Fig. 19 show screenshots from this demo setup for “Pick rotor-cap from 
conveyor” instruction. 
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Fig. 18. The trials of the instruction compiler in IASSES demo setup with Little Helper 4 (1) 
 

 
Fig. 19. The trials of the instruction compiler in IASSES demo setup with Little Helper 4 (2)  

 

5.2. Application to CHEMLAB scenario 
 
The instruction sentence “Harvest the E.Coli by centrifugation at 6000g for 10 minutes at 4°C” is 
used for the demonstration of the instruction completion algorithm for the CHEMLAB scenario. 
First, the words in the instruction sentence are annotated with dependency syntax (Fig 20). 
Dependency syntax results (“Parsed Info” rows): dep(harvest,E.Coli) – unrecognized role, 
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prep_by(E.Coli, centrifugation) – action object E.Coli is modified by centrifugation entity, 
prep_at(centrifugation, 6000g) – action object E.Coli is modified by 6000g entity, num(minutes, 
10) – defines quantity of minutes, prep_for(6000g, minutes) – entity 6000g is modified by minutes 
entity, prep_at(minutes, C) – entity minutes is modified by C entity. 

 
 

Fig. 20. Example of text parsing results for CHEMLAB scenario 

 
In the next stage, each verb and noun from the parsed instruction sentence is used as an input for 
CHEMLAB ontology SPARQL queries (Fig 21). 

In this example, the action harvest in the instruction is recognized as a HAND-ONLY action 
(rdf:type HAND-ONLY_ACTION). However, it includes a sub-action – centrifugation (:include_action 
centrifugation). It is also defined as entity (owl:NamedIndividual) and has target object polymer 
(:has_target_object polymer).  

By executing another SPARQL query, it is possible to classify the centrifugation action as a 
TOOL_ACTION (rdf:type TOOL_ACTION), which requires tool centrifuge (:requires_tool centrifuge). 
It has also target object cell (:has_target_object cell).  Also, information about action background 
objects is extracted – it is possible to recognize, that E.coli is a cell (owl:is_a cell) and bacteria 
(owl:is_a bacteria) – type of material (rdf:type TOOL_ACTION).  

As in this case we have two action categories, identified for the instruction sentence: HAND-ONLY 
(for harvest) and TOOL-WITH-MOVERS-ACTION (for centrifugation), two action step sequences are 
defined (Fig. 22). 
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Fig. 21. Example of ontology query results for CHEMLAB scenario 

 

 
Fig. 22. Example of action steps in IASSES scenario. 
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Additional language level reasoning needs to be added to blend the two actions "harvest" and 
"centrifugation" into one robotic action sequence, as here obviously centrifugation is the actual 
action that needs be performed. 

In both action sequences, there remains an unrecognized action step act. In addition, our currently 
defined action classes are obviously insufficient. The centrifugation was attributed to the closest 
class from the existing one (tool with movers action), however our action primitive sequence 
attributed to centrifugation is incorrect, as we shall open the centrifuge instead of picking it up, 
then we need to place the test-tubes into centrifuge, etc. These are all indicators that the action 
sequence needs more details. However currently this cannot be extracted, neither from 
instruction parse data, nor from the action ontology. In this case, more action classes, or a more 
detailed instruction sheet, including more detailed steps of centrifugation action, would be 
necessary. Or, alternatively, detailed ADTs, compiled from experiments, could be used.  

6. Conclusions and future work 
Here we have presented our textual instruction sheet completion framework which reaches into 
the compilation process of the instruction sheets. We take a human readable instruction and 
convert it into action primitive sequence providing for each action primitive a preliminary Action 
Data Table (ADT) with filled in symbolic level information. Thus, Instruction compilation is 
currently only discussed at the symbolic information level and additional part that adds signal 
(control level) information will be presented in the following deliverable D3.2. 

The designed instruction completion schema and the corresponding ACAT instruction compilation 
application are in principle able to parse instruction sheet information and define the actions and 
syntactic roles for action background elements. The approach of combining parsed instruction 
sheet information with ontology query results seems to give adequate information for instruction 
completion. Knowledge of actions and action background objects can be further improved by 
querying the action ontology, including more details on action execution parameters (properties, 
size, quantity, location, etc.). There are possibilities for filling in missing action or object 
information with the most probable action or object instances – in this case, an SVM classification 
algorithm is used.  

Currently we are getting some mistakes in defining the action primitive sequence and are 
expecting to correct most of those mistakes until the month 21, when an update of this 
deliverable will be provided. One cannot expect to perform the conversion of human readable 
instructions to an ADT in a totally error-free way, as this requires very far reaching reasoning 
processes, which current artificial reasoning systems cannot yet address. Thus we expect to also 
have some residual errors, which will be corrected in the phase of human validation in the ACAT 
system.   
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The action ontology used includes predefined action classes with a description of action primitives 
(action step sequences), where the action class set is not yet complete. This is the first source of 
mistakes in the current compilation procedure. The evaluation of compiler results for both 
scenarios should also consider the fact, that the size of the knowledge base, currently used for 
each task, is different. The IASSES ontology is built from a corpus containing over 3.5 million 
words, CHEMLAB form a corpus, containing more than 3 million words of common chemical 
laboratory descriptions and about 5.9 million words of biochemical texts. These ontologies are still 
being put together and extended by us.  

It is impossible to predict – but to some degree expected - that an ontology, built from a larger 
domain-specific corpus gives better queries results. The results of instruction completion using 
ontology queries depend, in addition to size, on the focus of the ontology and the domain-specific 
corpus focus w.r.t the specific tasks. Future work on instruction completion should include the 
improvement of algorithm precision and accuracy by expanding the ontology from additional 
domain-specific corpus data, and also by including additional weight information, obtained from 
the feedback of ADT validation by the human and execution.  
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8. Appendices 

8.1. Documentation of the ACAT instruction completion (instruction compiler) 
software 

 

Introduction  

The ACAT instruction compiler is designed as a Google Web Toolkit AJAX application. Technologies 

used: Google Web Toolkit (GWT), Jena Library, Stanford NLP parser. The main tool functions: ACAT 

instruction sheet parsing, ontology querying, preparation of preliminary ADT structures. 

Conceptual model 

The ACAT instruction compiler is based on the MVP (Model – View – Presenter) architecture (Fig. 

A1). The selected GWT technology allows us to develop and maintain complex AJAX front-end 

applications in Java.  

 

Fig. A1. The conceptual MVP model of the ACAT instruction compiler 

All instruction sheets sentences are analyzed with asynchronous remote procedure calls from the 

client to the server side. Additional libraries (Jena ontology querying library, Stanford NLP parser, 

etc.) and algorithms implementation from shared package are used in both client and server sides. 

System class diagram is presented in two parts, for client and server packages (Fig. A2, Fig. A3). 
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Fig. A2. Class diagram for ACAT instruction compiler client side 
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Fig. A3. Class diagram for ACAT instruction compiler server side 

 

User interface 

The user interface of the ACAT instruction compiler is built using standard GWT UI widgets and 
panels. It consists of (Fig. A4):  dialog window for entering the instruction to be analyzed and 
button, starting the analysis/compilation.  
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Fig. A4. User interface of the ACAT instruction compiler 

Examples and screenshots 
The ACAT action ontology, queried by the ACAT instruction compiler, is structured by classifying 
actions into action categories as described in the Deliverable D2.1. It also contains links to the 
Action Data Table (ADT) data, also structured as defined in D2.1.  

The compiler execution starts with entering the instruction in the compiler dialog window. The 
first step of the compiler execution results with the parse data for the instruction (Fig. A5).  

 

Fig. A5. Example of instruction parsing results 

 An example of ontology query results using the instruction compiler tool is presented in Fig. A6. 
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Fig. A6. Results of an Action ontology query  

Wherever more detailed action data is present in the ontology (ADT data), detailed action 
sequence is returned by the compiler (Fig. A7).  

 

Fig. A7. Results for a detailed action sequence 
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