
Page 1 of 23

Deliverable number: D2.1
Deliverable Title: Background data structure
Type (Internal, Restricted, Public): PU
Authors: H. Langer, C. Landgraf, D. Nyga, M. Beetz,
 I. Markievicz, D. Vitkute-Adzgauskiene, M. Tamosiunaite,
 F. Wörgötter
Contributing Partners: UoB, UGOE, VDU

Project acronym: ACAT
Project Type: STREP
Project Title: Learning and Execution of Action Categories
Contract Number: 600578
Starting Date: 01-03-2012
Ending Date: 28-02-2015

 Contractual Date of Delivery to the EC: 02-12-2013
 Actual Date of Delivery to the EC: 02-12-2013

Page 2 of 23

Content
1. EXECUTIVE SUMMARY .. 3

2. INTRODUCTION .. 3

3. GENERAL STRUCTURE OF THE ACAT ADT LIBRARY ... 4

4. ACTION CLASSES ... 4
Null-Action ... 5
Homing Action ... 5
Hand-Only Action ... 5
Handling-Action ... 5
Tool Action ... 5
Tools-with-Movers-Action ... 5
Pick and Place Action ... 6

5. ACTION DATA TABLES - ADTS .. 6

6. FUNCTION-SPECIFIERS AND TRAJECTORY AND FORCE DESCRIPTORS .. 8
Locate Process Specifier ... 8
Grasp Specifier ... 8
Trajectory ... 8
Force .. 8

7. FILLING THE ADTS AND REACTIVE CONTROL MECHANISMS ... 9

8. EXAMPLE FOR A SET OF ADTS FOR ONE ACTION FROM A GIVEN CLASS .. 9

9. INTERIM SUMMARY ... 12

10. ONTOLOGY ... 13

11. LINKING THE TEXT BASED ONTOLOGY AND ACTION DATA TABLES FOR ADDRESSING THE ACAT
PROBLEM ... 14

12. CONCLUSIONS .. 16

REFERENCES ... 17

APPENDIX: OWL CODE FOR SELECTED ACTION DESCRIPTIONS ... 17

Page 3 of 23

1. Executive summary
This deliverable describes the data structures developed and used in ACAT. Two components are defined:
1) Robot execution-relevant data structures and 2) Symbolic, ontological data structures.

The following entities will be introduced in this document (ADT stands for Action Data Table):
1) Action Classes with one or more primitives each;

a) ADTs for every primitive consisting of HEADER and SEQUENCE OF ACTION CHUNKS
i. HEADER with basic action information;

ii. SEQUENCE OF ACTION CHUNKS with action relevant parameters for each chunk.

2) Text-based ontology data structure consisting of
a) ACTIONS, action classes and action parameters;
b) OBJECTS and object parameters.

Furthermore, we discuss how these data structures are linked to each other so that the ACAT problem of
compiling a human instruction sheet for robot use can be addressed.

2. Introduction
This deliverable is to provide the data structure for background knowledge in the ACAT project. By
"background knowledge" we mean the shared knowledge humans have about the world which they would
not explicitly mention in texts (here: instruction sheets) written for other humans. If a robot has to execute
an instruction sheet written for humans, the required background knowledge for a robot consists of two
components: symbolic knowledge (in the field of artificial intelligence this would be called common-sense
knowledge, i.e. the collection of facts that an average human is expected to know) as well as the necessary
symbol to signal link (control level knowledge) that the robot has to have to execute symbolic instructions.

The amount of “background” knowledge, as defined above, is huge as compared to the little knowledge
provided in an instruction sheet in our ACAT scenarios. Consequently, when we talk about “background
data structure for the ACAT project” we factually talk about the “complete data structure for the ACAT
project”. Thus, in this deliverable we will describe the data structure(s) used in ACAT, their links to each
other, and some of the processes used to fill the data structures with their data. All these aspects (data
structures, links and processes) remain in the core of the ACAT research and are likely to change in the
course of the project.

Essentially we are dealing with two types of data structures:

1) Data structures for ontological knowledge, mostly from language sources (Ontology), which
provide the link to the human instruction sheets and

2) Data structures for interfacing to the robot (so called Action-Data-Tables, ADT), which allows robot
execution.

For brevity, we will use the abbreviations ”Ontology” and ”ADT” in the following.

Page 4 of 23

Ontological knowledge is mainly symbolic, whereas the ADTs store also much sub-symbolic information,
required to allow for robot execution of an action or action sequence.

The motivation for designing these data structures is that ACAT wants to arrive at a standardized (robot)-
action representation, which can be used for AI-reasoning processes as well as for robotic applications at
different embodiments. This allows us to address the core problem of ACAT: How to compile human
instruction sheet into robot compatible execution language.

In the next sections we will first describe the ADTs before providing details about the Ontology. Only at the
end we will discuss the links between both and some aspects on how to fill these data structures.

3. General Structure of the ACAT ADT library
ADTs are defined for a few generic action classes, which are of relevance for the ACAT scenarios, but we
expect that there are not many more action classes existing (see below).

We distinguish essentially three layers, where the second layer defines the core structure of the ADTs:

1) Action Classes – defined by a sequence of standard chunks composing the action (see next);
2) Action Data Tables – for every chunk provides all parameters and function calls;
3) Function-Specifiers (for controllers) – for complex aspects like e.g. grasp definition provide the

necessary structures and parameters (this can include feedback control parameters).

Here we provide all structures as tables (human readable format), though the general format that will be
used in ACAT project is in OWL language. Rendering in OWL language will be provided for selected
examples at the end of this document.

At the end of these sections we will also discuss error handling.

4. Action Classes
In general we assume that robot actions can be divided into several sequential primitives and a primitive is
given by the fact that the robot will (or could) remove its hand at the end of a primitive.

Also note: Locate, grasp, pick up and release (put down) are always parts of an action. We define these by
calling individual “controllers”. Interspersed between those parts can be another action. For example: pick
up spoon, stir with spoon in cup, put down spoon (the underlining refers to two action parts).

The following descriptions are coarse-grained. Specifics of how to actually specify this in detail will be given
when discussing the Action Data Tables.

Now we define the Action Classes and their primitives. Examples come from our scenarios!

Page 5 of 23

Null-Action
An action with one primitive, only! Wait for some time until some other process completes (E.g. “wait,
hold”).

No action for some time

Homing Action
An action with one primitive, only! E.g. “Move robot actuator to a home position”

Move robot arm/hand to a home position

Hand-Only Action
Actions with hand and single object (e.g. “press button, pull up, pull down, screw on/off, open lid (without
removing), close lid”)

Note: screw-on/off assumes that the screw sits on the target, if you have to move/remove it then one
should consider this as an additional pick&place action.

Locate target object
Act at target

Handling-Action
(e.g. “shake, invert”)

Locate source object
Pick up object
Act
Put down object

Tool Action
Actions with primary tools. (e.g. “stir with a spoon, screw with a screwdriver, hammer with a hammer”)

Locate tool
Pick up tool
Locate target object
Act at target
Remove and Put down tool

Tools-with-Movers-Action
Actions with an additional mover (for example ‘gravity’ or motors): “Pouring” (gravity action!) or systems
with transmissions, gears, motors. (Power tools). (e.g., “pour, add a drop, drop something, discard (throw
away), mix with mixer)”.

Locate tool
Pick up tool
Locate target object
Act on source such that “mover” does its job on target
Remove and Put down tool

Page 6 of 23

Pick and Place Action
Pick and Place (e.g. “put down, insert [peg and hole], put together, put on top, put into, essentially all
variants of putting together and pushing together”).

Locate source object
Pick up object
Locate target object
Put down source object at target

5. Action Data Tables - ADTs
Here we describe in detail how the action data tables are organized. Every primitive has its own ADT! Not
always all entries in an ADT will have to be filled, though (see example below). All information is here given
in human readable format. For the use with robots these tables are translated in OWL code (an example is
given at the end of this document).

An ADT divides into header and sequence of action chunks.

HEADER: The header describes the action type, then the objects with which the action is performed. Next
the Semantic Event Chain (SEC) table of the respective action is provided. The SEC defines the sequence of
action chunks thus dividing an action into yet smaller temporal entities.

SEQUENCE OF ACTIION CHUNKS: The sequence provides for every chunk given by a SEC all action-relevant
details. For example: start and end points of the movement, trajectory and force profiles, pose
relationships, grasps, etc.

Next we show how an ADT looks like. The HEADER is everything above the olive-green divider. The
SEQUENCE OF ACTION CHUNKS is beneath the divider.

Page 7 of 23

Action Data Table (ADT) for Action = “Name”
HEADER
Name Description Type
Action Action type (name, same as above, verb) string (Word)
Source object Object type (name of object, noun) string (Word)
Target object Object type (name of object, noun) string (Word)
Source Object
Descriptors

Robotics relevant object description CAD, or reduced description, incl.
“object anchor” frame1.

Target Object
Descriptors

Robotics relevant object description CAD, or reduced description, incl.
“object anchor” frame.

Anchor Points
(SEC)

Semantic Event Chain for this action which defines the chunks of an
action

SEC table

Precondition Check Assessed status of required preconditions for action as specified by
SEC (similar in meaning to success variables)

True/False

Function specifier:
Locate

A function call to the locate function specifier (if required) function(parameters2)

Locate Success
specifier

Confidence in detecting an object + decision detected or not real value + yes/no

SEQUENCE OF ACTION CHUNKS
SEC chunk 1
Start(1) Move source object from there 3D coord
Target(1) Move source object to here 3D coord
Orientation(1) Desired orientation of source object (or hand/finger) at target. 3D Orientation Vector
Task space
trajectory(1)

This is the set of coordinates in task space that define the trajectory
(execution methods may differ)

Set of 3D coords

Force(1) Force(profile) for contact of source with target object Set of 3D coords
Grasp(1) If required for this action: Grasp specifier for grasp or ungrasp function (parameters)
Grasp success
specifier(1)

If grasp: value for grasp stability (0=failure) real value

Additional(1) As required As required
Success specifier(1) Overall success to reach the desired end state + indicators what was

unsuccessful (SEC level achieved or not, trajectories match to
planned or not, forces ok or not, poses ok or not, etc.)

A set of 4 indicators

SEC chunk 2
Start(2)=Target(1) Move source object from there 3D coord
Target(2) Move source object to here 3D coord
Orientation(2) Desired orientation of source object (or hand/finger) at target 3D Orientation Vector
Task Space
Trajectory(2)

This is the set of coordinates in task space that define the trajectory
(execution methods may differ for partners)

Set of 3D coords

Force(2) Force for contact of source with target object Set of 3D coords
Grasp(2) If required for this action: Grasp specifier for grasp or ungrasp function (parameters)
Grasp success
specifier(2)

If grasp: value for grasp stability (0=failure) real value

Additional(2) As required As required
Success specifier (2) Overall success to reach the desired end state + indicators what was

unsuccessful (SEC level achieved or not, trajectories match to
planned or not, forces ok or not, poses ok or not, etc.)

A set of 4 indicators

More chunks if needed

Note, these tables are not specific w.r.t the actual execution methods. E.g. Trajectories are specified in task
space and can be generated “in any way” by a user.

1 Objects need to come with one specific coordinate and orientation on which the CAD (or other) description “hangs”. This
coordinate is to be used to define the complete system for different robotic installations in their specific task space.
2 Here parameters are grasp or locate parameters.

Page 8 of 23

Also, we do – on purpose – not use “pose” as a descriptor but instead “goal” and “orientation” (which are
the two aspects that constitute pose). The reason is that for many actions “orientation” can remain rather
vaguely specified only.

6. Function-Specifiers and Trajectory and Force Descriptors
We use two types of function specifiers:

1) Locate Process Specifier
2) Grasp Specifier

Locate Process Specifier
Here we will place parameters used for scene investigation in order to locate an object. These contain
camera set-up specifiers needed for specific object search, the segments of the images where an object is
expected to be, etc.

Grasp Specifier
For the different grasps it may make sense to specify a few default tables, where we will only vary the
parameters. Hence:

Name Description Value
Power (params)

Pose Handpose to source obj. Matrix
Size Width of hand opening Numerical
Fource Fource to graps Numerical

Specifier

Pinch(params)
Pose Handpose to source obj. Matrix
Size Width of hand opening Numerical
Force Force to grasp Numerical

Specifier

Etc. Etc. Specifier

Trajectory
We put the trajectory information into the ADT as a task space coordinate sequence, as this is the general
format every user can provide. For execution (re-use) the saved trajectory can be re-parameterized up to
individual user demands (e.g. using DMP (Ijspeert et al, 2002, Kulvicius et al., 2012) or splines, or any other
useful implementation).

We describe trajectory by indicating position and orientation values (when required) as well as force
profiles (when required).

Force
Here force profile is specified, as a sequence of force values (3D sequence). Again, users can re-
parameterize the force profiles for re-use at their own convenience.

Page 9 of 23

7. Filling the ADTs and Reactive Control Mechanisms
This deliverable does not deal with these aspects but they are being addressed through major research
efforts in ACAT to be reported elsewhere.

8. Example for a set of ADTs for one action from a given class
Let us assume we have an instruction from our scenario: "Place the rotor cap on top of the fixature". The
instruction imposes the following actions (which we will analyze in detail below):

1) Locate rotor cap
2) Pick up rotor cap
3) Locate fixature
4) Put rotor cap on fixature

This is an example from the Action Class: Pick and Place Action given by

Locate source object
Pick up object
Locate target object
Put down source object at target

Specifically, we will provide here ADTs for the four primitives defined above. In blue font human-readable
entries for concrete parameter values are given.

Graphical visualization of ADT conceptual model with two action entities ("Locate rotor cap" and "Pick up
rotor cap") is given in Fig. 1. In addition, the OWL code for the first two actions ("Locate rotor cap" and
"Pick up rotor cap") is provided in the Appendix.

LOCATE (source object – rotor cap)

Name Description Type
Action Locate string (Word)
Source object Rotor Cap string (Word)
Target object Void string (Word)
Source Object
Descriptors

CAD or similar description of tool (required to define the grasp) for
the Rotor Cap

CAD, or reduced description, incl. “object anchor”
frame.

Target Object
Descriptors

Void CAD, or reduced description, incl. “object anchor”
frame.

Anchor Points Void SEC table
Precondition Check Void True/False
Function specifier:
Loacte

A function call to the function specifier of locate function(parameters)

Locate success
specifier

Confidence in detecting an object + decision detected or not. real value + yes/no

SEC-determined Sub-Parts (index is determined by the anchor points as given by the SEC)
Void

Page 10 of 23

PICK UP OBJECT (rotor cap)

Name Description Type
Action Pick up Object string (Word)
Source object Transferred: Rotor Cap string (Word)
Target object Void string (Word)
Source Object
Descriptors

Transferred: CAD or similar description of the Rotor Cap CAD, or reduced description, incl.
“object anchor” frame.

Target Object
Descriptors

Void CAD, or reduced description, incl.
“object anchor” frame.

Anchor Points Semantic Event Chain for pick up object
(hand,object) 0 1 1
(object,table) 1 1 0

SEC table

Precondition Check Assessed status of required preconditions for action as specified by SEC above. True/False
Locate Function
specifier

Void function(parameters)

Locate success
specifier

Void real value + yes/no

SEQUENCE OF ACTION CHUNKS
SEC shunk 1 (hand goes from home to grasp)
Start(1) Start position of robot hand: Home 3D coord
Target(1) Target position for grasp: Middle of the Rotor Cap 3D coord
Orientation(1) Desired pose of tool versus hand for grasping: As required for pinch perpendicular to

the Rotor Cap
3D Orientation Vector

Task Space:
Trajectory(1)

Trajectory in task space for the source object: Default straight or as demonstrated Set of 3D coords

Force(1) Force for contact of source with target object: Grasp force set of 3D coords.
Grasp(1) Pinch perpendicular to the Rotor Cap function (parameters)
Grasp success
specifier(1)

Value for grasp stability (0=failure) real value

Additional(1) As required. Void As required
Success specifier(1) Overall success to reach the desired end state + indicators what was unsuccessful

(SEC level achieved or not, trajectories match to planned or not, forces ok or not,
poses ok or not, etc.)

An set of 4 indicators

SEC shunk 2 (grasped object is lifted)
Start(2) Start position of the chunk (=Target(1)) 3D coord
Target(2) End position of the lift. Default: 1 mm up or as demonstrated. 3D coord
Orientation(2) Desired pose of the lift. Default same as at the start or as demonstrated. 3D Orientation Vector
Task Space:
Trajectory(2)

Trajectory in task space. Straight if no obstacles Set of 3D coords

Force(2) Force for lifting set of 3D coords.
Grasp(2) Void function (parameters)
Grasp success
specifier(2)

Void real value

Additional(index) Void As required
Success specifier(2) Overall success to reach the desired end state + indicators what was unsuccessful

(SEC level achieved or not, trajectories match to planned or not, forces ok or not,
poses ok or not, etc.)

An set of 4 indicators

Page 11 of 23

LOCATE (target object - fixature)
Name Description Value
Action Locate string (Word)
Source object Fixature string (Word)
Target object Void string (Word)
Source Object
Descriptors

CAD or similar description of tool (required to define the grasp) for
the Fixature

CAD, or reduced description, incl. “object anchor”
frame.

Target Object
Descriptors

Void CAD, or reduced description, incl. “object anchor”
frame.

Anchor Points Void SEC table
Precondition Check Void True/False
Locate Function
specifier

A function call to the function specifier of locate function(parameters)

Locate success specifier Confidence in detecting an object + decision detected or not real value + yes/no

SEC-determined Sub-Parts (index is determined by the anchor points as given by the SEC)
Void

PUT DOWN (rotor cap on fixature)

Name Description Type
Action Put down Object string (Word)
Source object Transferred: Rotor Cap string (Word)
Target object Name of Target Object: Fixature string (Word)
Source Object
Descriptors

Transferred: CAD or similar description of Rotor Cap CAD, or reduced description, incl.
“object anchor” frame.

Target Object
Descriptors

Reduced descriptor for target (surface, is-free, etc.): CAD or similar description of
Fixature

CAD, or reduced description, incl.
“object anchor” frame.

Anchor Points SEC for put down
(Hand,R.Cap) 1 1 0
(R.Cap,Fixature) 0 1 1

SEC tabe

Precondition Check Assessed status of required preconditions for action as specified by SEC above. True/False
Locate function
specifier

Void function(parameters)

Locate success
specifier

Void real value + yes/no

SEQUENCE OF ACTION CHUNKS
SEC chunk 1 (actual put down)
Start(1) Transferred: (= former target position after previoius action (Target(2) in prev. table)) 3D coord
Target(1) Target position for put down: Position of fixature 3D coord
Orientation(1) Desired pose of the put down. Default same as at the start. 3D Orientation Vector
Task Space:
Trajectory(1)

Trajectory in task space. Default movement of putting from above if no obstacles Set of 3D coords

Force(1) Force for putting down set of 3D coords.
Grasp(1) Void function (parameters)
Grasp success
specifier(1)

Void real value

Additional(1) Void As required
Success specifier(1) Overall success to reach the desired end state + indicators what was unsuccessful

(SEC level achieved or not, trajectories match to planned or not, forces ok or not,
poses ok or not, etc.)

An set of 4 indicators

SEC chunk 2 (retract hand)
Start (2) =Target(1) 3D coord
Target(2) target position of the hand, home default 3D coord
Orientation(2) Desired pose of the hand: home default 3D Orientation Vector
Task Space:
Trajectory(2)

Trajectory for bringing hand home, default straight (or comes from demonstration) Set of 3D coords

Force(2) Void set of 3D coords.
Grasp(2) Un-grasp function (parameters)
Grasp success
specifier(2)

Success specifier (0=failure) real value

Additional(2) Void As required
Success specifier(2) Overall success to reach the desired end state + indicators what was unsuccessful

(SEC level achieved or not, trajectories match to planned or not, forces ok or not,
poses ok or not, etc.)

An set of 4 indicators

Page 12 of 23

The figure below shows a graphical representation of the above example.

Fig. 1 Graphical visualization of ADT conceptual model with two examples of action entities (“Pick up rotor
cap” and “Locate rotor cap”). Numbers show link points to the text-based ontology conceptual model (Fig.

2). The OWL-List component is taken from Drummond et al (2006).

9. Interim Summary
Up to this point we have described that part of the data structures which will allow for robot execution of
different actions from our action classes.

The following components had been introduced:
1) Action Classes with one or more primitives each

a. ADTs for every primitive consisting of HEADER and SEQUENCE OF ACTION CHUNKS with
several chunks

i. HEADER with basic action information.
ii. SEQUENCE OF ACTION CHUNKS with action relevant parameters for each

All ADT parts come with their own success specifiers, which can be used to trigger corrective actions. ADTs
are coded in OWL.

All (required) information will have to be entered – manually or automatically – into the ADTs (see Section
11).

In the next sections we will introduce the starting point for the Ontology.

Page 13 of 23

10. Ontology
In Fig. 2 the conceptual model of the text-based ontology is presented. The presented action ontology
model assigns an appropriate action synset for each action as well as action details required for execution
that can be obtained from textual sources. The action synset contains verbs, prepositional verbs and
phrasal verbs, having the same sense. We divide actions into action classes as described in section 4.

Each action can be parameterized with modifiers, which can affect action execution speed (e.g. wash
slowly, wash quickly), method (e.g. wash carefully, wash safely), repeating sequence (e.g. wash once, wash
twice, wash repeatedly, wash again) or the sequence of steps (e.g. wash first, wash then). We plan to
include this information as action properties, but at the current stage we are not yet decided on the exact
structure of property definition and only some of those properties, like “Time” and “Movement trajectory”
were included in the current version of the conceptual model. Note, here we talk only about information
coming from textual sources, and corresponding (complementary) information coming from robotic
implementations will be provided in the ADTs described above.

In the current version of the conceptual model each action class has the following set of environment
elements: objects, tools, time span, location, object materials, etc. (see Fig. 2). The process of extracting the
environment elements is organized in three steps: 1) text preprocessing and building the glossary of
possible environment elements; 2) obtaining rules (search patterns) for action environment element
classification; 3) classifying the action environment elements by their roles. Each action environment
element can be described by its properties. Defined ontology formalizes knowledge from various e-learning
resources: online books, scientific literature, etc.

The list of the most common verbs for the chemistry domain (as obtained in the collected text corpus for
the CHEMLAB scenario of ACAT) can be divided into three main groups of verbs: specific actions from
chemistry laboratory domain (e.g. distill, extract, cool, reduce), verbs describing part of actions (e.g. place,
reach, take), multiword actions (e.g. make distillation, get cool, start stirring). In the ACAT project will make
an attempt to transform more complex, domain-specific action verbs into a sequence of simpler actions
that have been described in section 4.

Page 14 of 23

Fig. 2. The conceptual model of the ACAT text-based ontology. The numbers show link points to the ADT
model (see Fig. 1)

11. Linking the text based ontology and Action Data Tables for addressing
the ACAT problem
ADT and text-based ontologies are presented in Fig. 1 and Fig. 2. By corresponding numbers in those figures
we show the links between the two models. These links will be used for applying reasoning throughout the
two structures. Ontologies can be merged both, on the conceptual model level and by considering
individual action instances. Merging on the conceptual level involves processes that can be used for
checking the similarity of concepts. Comparing instances depends on checking the similarity of the
instances through textual string metrics and semantic knowledge. In Figs 1,2 we show only the links at the
conceptual model level.

Page 15 of 23

In the following we give an example how the structures defined above (ADTs and text-based ontologies)
can be used for execution of new instructions previously not executed by a robot.

In the next stage of the ACAT project a set of Action Description Tables (ADT) will be filled. This includes
learning by demonstration, learning from simulation, as well as simple pre-programming, when necessary.
When – through such processes – the ACAT system has accumulated a large enough action set (e.g. has
filled in data structures for 5 or 10 instructions), generalization and re-use procedure can be started. If the
new instruction is "similar enough" to the instructions for which the ADTs have been filled, we can try to re-
use information from those tables. The approach for information from ADT re-use is illustrated in Fig. 3.

Here we give an example, which is just illustrative, to show the essence of information re-use we are
currently implementing.

Let us assume that ATDs exist for the following instructions. (We add "K" to the numbers below to indicate
this is a "known" instruction):

K1) Place the rotor cap on top of the fixature;
K2) Remove the test-tube from the holder;
K3) Shake the bottle;
K4) Insert the test-tube into the centrifuge;
K5) Remove the magnet from the magnet holder.
K6) Put a rotor cap on the table

Let us assume that the new instructions that robot needs to execute (and never has executed before) are
the following (“N” for “New”):

N1) Insert the magnets into magnet-holes
N2) Remove the rotor from the press.
N3) Put a bottle on the sideboard.

We can now consider and explain several possible aspects of generalization and re-use. Re-use is
implemented by exploiting language similarities, as well as by cross-inferences.

Cross-inference can take the shape of one-to-one comparisons of following kind: If the object was ever
grasped following any known instruction and if the geometrical shape of the new object (in a new
instruction) is similar enough (by some metric) then the system can attempt to re-use the previously used
grasp (with not too many re-parameterizations). While this was just one possible way for re-use based on
cross-inference, other similar inferences can be considered, too.

If for any new instruction there is more than one known instruction that relate to it we can try to select the
one which is most similar considering all aspects in the ADTs as well as with respect to language
(ontological) analyzes.

In general we find that re-use can be centered on the action verb in the instruction. If we e.g. need to
execute a new instruction N2: "Remove the rotor from the press", and we have two known instructions K1
and K5, where "remove" was performed, we can select the most similar one and then it may be possible to
infer sub-aspects, e.g. trajectories, etc.

Page 16 of 23

Not all the actions suggested by the given replacement scheme will be exactly correct. Here we plan
designing procedures how a human operator can be included into the decision process, where human
either accepts suggestions given by the systems or does tuning of the suggestions provided by the system.

Concretely:
1) Existing Knowledge: Assume that

several such ADTs have been
designed (left side of figure).

2) Novel Request Processing: Give a
novel action request (place bottle
on sideboard).
a. Enquire text-based ontologies

for information for similarities
between existing data and
novel request (top part of
figure).

b. Transfer all similarity-
confirmed data into the novel-
request data structure (red
arrows, not all shown).

c. Correct and complete filling in
the novel-request data
structure by any means (not
displayed).

Fig. 3. General scheme of information re-use from the Acat database.

12. Conclusions
Background knowledge for a robot comes in two forms: symbolic knowledge and action execution (control
level) knowledge.

Symbolic knowledge is provided in the form of ontologies and action execution level knowledge is provided
in the form of action description tables, containing parameters required for execution. The set of
parameters needs to be a compromise between different groups, as currently different robotic systems
(also in different partner groups) use different ways to describe robotic execution. Here we use Semantic
Event Chain based chunking and task space description as general grounds. However, the data structures
are not final and the development of those data structures will continue throughout the ACAT project.

We have marked the linking points between text-based ontology and the action execution level knowledge
(ADTs), however more linking possibilities may emerge in future during the testing and ongoing
development of the here suggested action structures, both on textual and control ends.

Page 17 of 23

References
Aksoy, E.E., Abramov, A., Dellen, B., Ning, K., Dörr, J. and Wörgötter, F. (2011) Learning the semantics of object action
relations by observation. Int. J. Robotics Res. (IJRR), 30, 1229-1249.

Drummond, N.; Rector, A.; Stevens, R.; Moulton, G.; Horridge, M.; Wang, H. & Sedenberg, J. (2006), Putting OWL in
Order: Patterns for sequences in OWL. , in 'OWL Experiences and Directions (OWLEd 2006).

Ijspeert, J.A., Nakanishi, J. and Schaal, S. (2002). Movement imitation with nonlinear dynamical systems in humanoid
robots, in Proc. 2002, IEEE Int. Conf. Robotics and Automation, 1398–1403.

Kulvicius, T., Ning, K., Tamosiunaite, M. and Wörgötter, F. (2012) Joining movement sequences: Modified dynamic
movement primitives for robotics applications exemplified on handwriting. IEEE Trans. on Robotics (IEEE T-RO) 28(1),
145-157.

Appendix: OWL code for selected action descriptions
Here we show the OWL code for the first two entries LOCATE K.1.1 and PICK UP K1.2

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [
 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
 <!ENTITY list "http://www.co-ode.org/ontologies/list.owl#" >
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
]>

<rdf:RDF xmlns="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#"
 xml:base="http://www.semanticweb.org/lnd/ontologies/2013/10/acat"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:list="http://www.co-ode.org/ontologies/list.owl#">
 <owl:Ontology rdf:about="http://www.semanticweb.org/lnd/ontologies/2013/10/acat">
 <owl:imports rdf:resource="http://www.co-ode.org/ontologies/lists/2008/09/11/list.owl"/>
 </owl:Ontology>

 <!--
 ///
 //
 // Object Properties
 //
 ///
 -->

 <!-- http://www.semanticweb.org/lnd/ontologies/2013/10/acat#hasFunction -->

 <owl:ObjectProperty
rdf:about="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#hasFunction">
 <rdfs:domain
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#ActionChunk"/>
 <rdfs:range rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Function"/>
 </owl:ObjectProperty>

Page 18 of 23

 <!-- http://www.semanticweb.org/lnd/ontologies/2013/10/acat#hasObject -->

 <owl:ObjectProperty
rdf:about="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#hasObject">
 <rdfs:domain
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#ActionChunk"/>
 <rdfs:range rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Object"/>
 </owl:ObjectProperty>

 <!-- http://www.semanticweb.org/lnd/ontologies/2013/10/acat#hasPosition -->

 <owl:ObjectProperty
rdf:about="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#hasPosition">
 <rdfs:domain
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#SemanticEvent"/>
 <rdfs:range rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Vector"/>
 </owl:ObjectProperty>

 <!-- http://www.semanticweb.org/lnd/ontologies/2013/10/acat#hasSEC -->

 <owl:ObjectProperty rdf:about="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#hasSEC">
 <rdfs:domain
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#ActionChunk"/>
 <rdfs:range
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#SemanticEventChain"/>
 </owl:ObjectProperty>

 <!-- http://www.semanticweb.org/lnd/ontologies/2013/10/acat#hasSourceObject -->

 <owl:ObjectProperty
rdf:about="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#hasSourceObject">
 <rdfs:domain
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#ActionChunk"/>
 <rdfs:range rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Object"/>
 <rdfs:subPropertyOf
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#hasObject"/>
 </owl:ObjectProperty>

 <!-- http://www.semanticweb.org/lnd/ontologies/2013/10/acat#hasStartPosition -->

 <owl:ObjectProperty
rdf:about="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#hasStartPosition">
 <rdfs:subPropertyOf
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#hasPosition"/>
 </owl:ObjectProperty>

 <!-- http://www.semanticweb.org/lnd/ontologies/2013/10/acat#hasTargetObject -->

 <owl:ObjectProperty
rdf:about="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#hasTargetObject">
 <rdfs:domain
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#ActionChunk"/>
 <rdfs:range rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Object"/>
 <rdfs:subPropertyOf
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#hasObject"/>
 </owl:ObjectProperty>

 <!-- http://www.semanticweb.org/lnd/ontologies/2013/10/acat#hasTargetPosition -->

 <owl:ObjectProperty
rdf:about="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#hasTargetPosition">

Page 19 of 23

 <rdfs:subPropertyOf
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#hasPosition"/>
 </owl:ObjectProperty>

 <!--
 ///
 //
 // Data properties
 //
 ///
 -->

 <!-- http://www.semanticweb.org/lnd/ontologies/2013/10/acat#objectDescriptor -->

 <owl:DatatypeProperty
rdf:about="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#objectDescriptor">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Object"/>
 <rdfs:range rdf:resource="&xsd;string"/>
 </owl:DatatypeProperty>

 <!-- http://www.semanticweb.org/lnd/ontologies/2013/10/acat#objectLink -->

 <owl:DatatypeProperty
rdf:about="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#objectLink">
 <rdfs:domain rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Object"/>
 <rdfs:range rdf:resource="&xsd;string"/>
 </owl:DatatypeProperty>

 <!--
 ///
 //
 // Classes
 //
 ///
 -->

 <!-- http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Action -->

 <owl:Class rdf:about="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Action"/>

 <!-- http://www.semanticweb.org/lnd/ontologies/2013/10/acat#ActionChunk -->

 <owl:Class rdf:about="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#ActionChunk">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#hasFunction"/>
 <owl:onClass
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Function"/>
 <owl:qualifiedCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:qualifiedCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#hasSEC"/>
 <owl:onClass
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#SemanticEventChain"/>

Page 20 of 23

 <owl:qualifiedCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:qualifiedCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#hasSourceObject"/>
 <owl:onClass
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Object"/>
 <owl:qualifiedCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:qualifiedCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#hasTargetObject"/>
 <owl:onClass
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Object"/>
 <owl:qualifiedCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:qualifiedCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <!-- http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Function -->

 <owl:Class rdf:about="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Function"/>

 <!-- http://www.semanticweb.org/lnd/ontologies/2013/10/acat#LocateObject -->

 <owl:Class rdf:about="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#LocateObject">
 <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#ActionChunk"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#hasTargetObject"/>
 <owl:hasValue
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Void"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <!-- http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Object -->

 <owl:Class rdf:about="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Object">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:onProperty
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#objectDescriptor"/>
 <owl:qualifiedCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:qualifiedCardinality>
 <owl:onDataRange rdf:resource="&xsd;string"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#objectLink"/>
 <owl:qualifiedCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:qualifiedCardinality>
 <owl:onDataRange rdf:resource="&xsd;string"/>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>

Page 21 of 23

 </owl:Class>

 <!-- http://www.semanticweb.org/lnd/ontologies/2013/10/acat#PickUpFunction -->

 <owl:Class rdf:about="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#PickUpFunction">
 <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Function"/>
 </owl:Class>

 <!-- http://www.semanticweb.org/lnd/ontologies/2013/10/acat#PickUpObject -->

 <owl:Class rdf:about="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#PickUpObject">
 <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#ActionChunk"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#hasTargetObject"/>
 <owl:hasValue
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Void"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <!-- http://www.semanticweb.org/lnd/ontologies/2013/10/acat#SemanticEvent -->

 <owl:Class rdf:about="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#SemanticEvent">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:onProperty
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#hasStartPosition"/>
 <owl:onClass
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Vector"/>
 <owl:qualifiedCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:qualifiedCardinality>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#hasTargetPosition"/>
 <owl:onClass
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Vector"/>
 <owl:qualifiedCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:qualifiedCardinality>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>

 <!-- http://www.semanticweb.org/lnd/ontologies/2013/10/acat#SemanticEventChain -->

 <owl:Class
rdf:about="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#SemanticEventChain">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <rdf:Description rdf:about="&list;OWLList"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="&list;hasContents"/>
 <owl:allValuesFrom
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#SemanticEvent"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="&list;isFollowedBy"/>

Page 22 of 23

 <owl:allValuesFrom
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#SemanticEventChain"/>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>

 <!-- http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Vector -->

 <owl:Class rdf:about="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Vector"/>

 <!--
 ///
 //
 // Individuals
 //
 ///
 -->

 <!-- http://www.semanticweb.org/lnd/ontologies/2013/10/acat#LocateRotorCap -->

 <owl:NamedIndividual
rdf:about="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#LocateRotorCap">
 <rdf:type
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#LocateObject"/>
 <hasSourceObject
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#RotorCap"/>
 </owl:NamedIndividual>

 <!-- http://www.semanticweb.org/lnd/ontologies/2013/10/acat#PickUpRotorCap -->

 <owl:NamedIndividual
rdf:about="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#PickUpRotorCap">
 <rdf:type
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#PickUpObject"/>
 <hasFunction
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#PickUpRotorCapFunction"/>
 <hasSEC
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#PickupRotorCapSEC1"/>
 <hasSourceObject
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#RotorCap"/>
 <hasTargetObject
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Void"/>
 </owl:NamedIndividual>

 <!-- http://www.semanticweb.org/lnd/ontologies/2013/10/acat#PickUpRotorCapFunction -->

 <owl:NamedIndividual
rdf:about="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#PickUpRotorCapFunction">
 <rdf:type
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#PickUpFunction"/>
 </owl:NamedIndividual>

 <!-- http://www.semanticweb.org/lnd/ontologies/2013/10/acat#PickupRotorCapEvent1 -->

 <owl:NamedIndividual
rdf:about="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#PickupRotorCapEvent1">
 <hasStartPosition
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Vector1"/>

Page 23 of 23

 <hasTargetPosition
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Vector1"/>
 </owl:NamedIndividual>

 <!-- http://www.semanticweb.org/lnd/ontologies/2013/10/acat#PickupRotorCapEvent2 -->

 <owl:NamedIndividual
rdf:about="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#PickupRotorCapEvent2">
 <hasTargetPosition
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Vector1"/>
 <hasStartPosition
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Vector1"/>
 </owl:NamedIndividual>

 <!-- http://www.semanticweb.org/lnd/ontologies/2013/10/acat#PickupRotorCapSEC1 -->

 <owl:NamedIndividual
rdf:about="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#PickupRotorCapSEC1">
 <list:hasContents
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#PickupRotorCapEvent1"/>
 <list:hasNext
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#PickupRotorCapSEC2"/>
 </owl:NamedIndividual>

 <!-- http://www.semanticweb.org/lnd/ontologies/2013/10/acat#PickupRotorCapSEC2 -->

 <owl:NamedIndividual
rdf:about="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#PickupRotorCapSEC2">
 <list:hasContents
rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#PickupRotorCapEvent2"/>
 </owl:NamedIndividual>

 <!-- http://www.semanticweb.org/lnd/ontologies/2013/10/acat#RotorCap -->

 <owl:NamedIndividual
rdf:about="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#RotorCap">
 <rdf:type rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Object"/>
 <objectDescriptor rdf:datatype="&xsd;string">"CAD for rotor
cap"</objectDescriptor>
 <objectLink rdf:datatype="&xsd;string">"Rotor Cap"</objectLink>
 </owl:NamedIndividual>

 <!-- http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Vector1 -->

 <owl:NamedIndividual
rdf:about="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Vector1"/>

 <!-- http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Void -->

 <owl:NamedIndividual rdf:about="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Void">
 <rdf:type rdf:resource="http://www.semanticweb.org/lnd/ontologies/2013/10/acat#Object"/>
 <objectDescriptor rdf:datatype="&xsd;string">"<void>"</objectDescriptor>
 <objectLink rdf:datatype="&xsd;string">"<void>"</objectLink>
 </owl:NamedIndividual>
</rdf:RDF>

<!-- Generated by the OWL API (version 3.4.2) http://owlapi.sourceforge.net -->

	1. Executive summary
	2. Introduction
	3. General Structure of the ACAT ADT library
	4. Action Classes
	Null-Action
	Homing Action
	Hand-Only Action
	Handling-Action
	Tool Action
	Tools-with-Movers-Action
	Pick and Place Action

	5. Action Data Tables - ADTs
	6. Function-Specifiers and Trajectory and Force Descriptors
	Locate Process Specifier
	Grasp Specifier
	Trajectory
	Force

	7. Filling the ADTs and Reactive Control Mechanisms
	8. Example for a set of ADTs for one action from a given class
	9. Interim Summary
	10. Ontology
	11. Linking the text based ontology and Action Data Tables for addressing the ACAT problem
	12. Conclusions
	References
	Appendix: OWL code for selected action descriptions

