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Abstract

In this paper we present a hierarchical framework for representation of ma-
nipulation actions and its applicability to the problem of top down action
extraction from observation. The framework consists of novel probabilistic
semantic models, which encode contact relations as probability distributions
over the action phase. The models are action descriptive and can be used to
provide probabilistic similarity scores for newly observed action sequences.
The lower level of the representation consists of parametric hidden Markov
models, which encode trajectory information.

Keywords: probabilistic semantic models, semantic event chains,
manipulation action primitives, action extraction, parametric hidden
Markov models

1. Introduction

An autonomous learning robot should be able to extract knowledge by
visually observing a human performing a desired task. Ideally, the robots
should learn in a manner similar to humans, who are capable of lifelong refine-
ment of their skills. Therefore we wish that the robot would autonomously
update its internal action models as it comes across new demonstrations. In
this paper we present a novel framework for representation of manipulation
actions, which is useful for locating known actions in longer observations.
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Similar approaches in the literature, which use top down search for ac-
tions, typically deal with the case where all of the actions contained in the
sequence are known. The algorithm only finds segmentation points between
these actions. However, a robot which continuously monitors its environment
would most of the time observe unrelated phenomena, with occasionally use-
ful demonstration of a known action. Such top-down search for segmentation
points using hidden Markov models as trajectory models and dynamic pro-
gramming was presented in [1]. In a similar approach, Hoai et al. [2] use
multi-class support vector machines. There has also been some research
in speech processing, where the problem is known as keyword spotting [3].
These approaches mostly use hidden Markov models. On the other hand,
Kang and Ikeuchi [4] dealt with temporal segmentation of manipulation tasks.
They present a measure for detecting segmentation points based on the speed
of demonstrator’s hand trajectory and type of his grasp. They do not use
action models, but instead segment the task based on low level trajectory
properties.

Herein we present a two-layer action representation, where the upper,
semantic layer, consists of novel probabilistic semantic models which encode
touch relations. The lower, trajectory layer, consists of parametric hidden
Markov models. We use the proposed semantic action models in order to
provide initial segmentation hypotheses. Search in this constrained space is
then performed using low level trajectory models.

At least in manipulation tasks, relations between objects and hands in-
volved in the action have been considered to extract higher level informa-
tion. A large body of works deals with so called topological contact states
between tasks, which characterize contact relations between manipulated ob-
jects. Different contact state representations differ in the way contacts are
defined [5]. One of the early examples is the work of Lozano-Perez [6], which
deals with spatial planning of manipulations for polygonal and polyhedral ob-
jects, representing contacts in terms of vertex-face and edge-edge contacts.
Ikeuchi and Suehiro [7] present configuration changes between objects be-
fore and after manipulation as high level assembly descriptions, which can
be extracted from observation. Xiao [8] introduces the notion of principal
contacts, which are elementary contacts between objects, such that seven
different contacts are possible between a pair of 3-D objects. In [9] they
present a method to construct contact formation graphs as representations
of the elementary contacts. Recently, Aksoy et al. [10] proposed the Seman-
tic Event Chain (SEC) framework, which characterizes manipulation actions
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by the following two spatial relations: touching and not touching. They pro-
vide a general computer vision system to extract these relations and show
that their framework is sufficient to represent all possible elementary single
handed manipulations [11]. Yang et al. [12] developed an algorithm to moni-
tor changes in object appearance and topological structure, which is used to
infer consequences of actions and recognition of manipulations. Many works
also explore object-action affordances [13, 14, 15, 16]. These approaches are
more object-centric, as they deal with determining the roles of the objects
in manipulation tasks and are less concerned with the problem of action
execution.

In this paper we build upon the notion of semantic events, as presented
in [10]. We construct action models not by deterministically assigning contact
relations to image segment pairs, but by probabilistically modeling frequen-
cies of semantic events. The proposed methodology is robust against noise,
which can cause spurious relations between objects to arise. We start with
a brief explanation of the SEC framework (Section 1.1), followed by issues,
typically encountered when attempting to extract symbolic representations
from sensory data (Section 1.2). Section 2 gives a detailed explanation of the
proposed probabilistic semantic models. Experiments using the proposed
approach are presented in Section 3. Compared to some other works in the
literature [7, 8], which focus on accurate analysis of object relations, our
approach relies on statistics of the observed contact relations and is there-
fore very suitable for applications that involve processing of real-world vision
data.

1.1. Semantic object relations

Semantic event chains, developed by Aksoy et al. [10], introduced the idea
of annotating relations between objects at decisive time points. The aim is to
construct a symbolic task description. Inspired by language development [17],
semantic relations are defined by object-object relationships. For each pair
of objects found in the scene, a semantic relation can be defined as touching,
not touching, or either of the two not present in the scene. A semantic event
is defined to occur whenever a change in semantic relations happens in the
scene. This can be caused by one of the following situations: a new pair
of objects starting to touch, a pair ceasing to touch, a new object entering
the scene, or an object leaving the scene. A semantic event chain is then
constructed as a temporal record of changes in semantic relations for all
pairs of objects in the scene.
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1.2. Challenges for working with real-world data

As already noted in [10, 18], it is naive to expect that the extraction of
object relations in complex scenes by general purpose computer vision would
be prefect. To compute relations between objects, objects must first be seg-
mented from the background. Due to the fact that in a learning scenario,
completely unknown objects may be encountered, model free object segmen-
tation algorithms must be used. Since model free object segmentation is an
ill-posed problem, typical algorithms rely on heuristic assumptions of “what
an object is”. Examples include assuming color or shape properties [19]
or rigid body motion principles [20, 21]. This way, a rough correspondence
between extracted image segments and actual objects can be obtained. How-
ever, detecting and segmenting unknown objects without any errors in the
presence of unpredictable motion, occlusions, even changes in objects them-
selves (e. g. an object being broken into pieces), is not realistic in the near
future.

Hence we are limited to noisy sensory data to extract information from
the real world. Needless to say, noise accompanying the measurements affects
the final output of the system. For example, in the process of spatial contact
detection some erroneous object relations can be detected for neighbouring
objects. Any symbolic representation which relies on such spatial object
relations will be prone to errors such as oversegmentation of manipulation
sequences. Furthermore, real world scenes often contain clutter - objects that
are not an essential part of the task and just happen to be in the robot’s field
of view. Methods which deterministically construct symbolic representation
from observation may treat any semantic events involving these objects as
essential parts of the action.

For example, consider a semantic event chain for a simple task of pouring
some milk into a bowl. A semantic event chain for this task should have
few entries: the hand touches the milk box, the milk appears in the bowl,
the hand puts the box back on the table and stops touching it. Figure 1
illustrates what typically happens when we extract the chain from a real-life
demonstration. Since we used computer vision as a sensory system, the chain
was constructed based on relations between image segments, which are just
approximations of true objects and as such the chain contains many items
which do not have a basis in physical object relations. As you can see, the
obtained result is far from optimal.
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Figure 1: The semantic event chain extracted from a recording of a milk pouring task.
The entries in the table present semantic relations between given pairs of labeled image
segments. Zero denotes the pair not touching, one denotes touching, and “/” denotes
either of the two not present. Each consecutive column corresponds to each image still
from Figure 7. The chain is not a good representation of the milk pouring task as it is
over-segmented. First, due to unreliable contact detection from vision, many contacts were
detected multiple times, resulting in too many columns. Second, since no object models
are available, the same objects were detected multiple times, which resulted in too many
rows.
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1.3. Hierarchical approach and lower level methods

In our previous work [17] we presented an approach where actions are
represented at two levels. The semantic level, which encodes object relations,
and descriptor level, which holds lower level information about execution of
the action. With such approach we can model the fact that some actions
are semantically similar, but are importantly different in terms of low level
descriptors. This simplifies evaluation of unknown sequences, as comparison
of lower level features is needed only in cases where a definite match could
not be found at the semantic level.

In this paper we follow the same scheme - we use our novel probabilistic
models on the semantic level and use trajectory information to represent the
lower level.

Representation and recognition of activities based on trajectory-level fea-
tures has long history. Probably the most popular approach are hidden
Markov models (HMM, [22]) and their many derivatives. They are a general
framework for statistical modeling of patterns, with successful applications
in speech [23], handwriting [24], as well as gesture recognition [25]. They
have also been utilized for human activity recognition, for example detect-
ing running or jumping from video feeds [26] [27] [28]. In our work we deal
with human manipulation actions, which are short and discrete. Compared
to gesture recognition problem, differences in execution trajectories between
different manipulations are much more subtle.

Herzog et al. [29] examined modeling of human and robot trajectories
using parametric hidden Markov models (PHMM, [30]). PHMMs can capture
inter-class variations between examples and as such ideal for representing
manipulation trajectories. Details regarding training and usage can be found
in Section 2.4.

2. Our approach

We propose to model actions on two levels. At the semantic level we,
for the reasons presented in Chapter 1.2, avoid construction of higher level
symbols and focus on the frequency of events, typically defining the sym-
bols. Following the SEC nomenclature, we concentrate on semantic events
- changes of semantic relations extracted from an image stream. We do
not consider concrete relations between image segment pairs. Instead, we
define models of action semantics as distributions of semantic events over
action duration. The models are learned in a supervised way from a set of
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training demonstrations. From the same training set, we also build mod-
els using execution trajectory data, which serves as lower level data. This
allows the system to evaluate previously unseen sequences in a hierarchical
way. First the pattern of occurrence of semantic events is compared to the
known distributions. Semantically similar actions are further distinguished
by comparing trajectories to trajectory models. We present construction of
the semantic models first; details on low level trajectory modeling can be
found in Section 2.4.

With the proposed approach we model manipulation actions. By the
term “action” we consider a part of a manipulation process, which is atomic
in a sense that it is captured by a single semantic model. Since the presented
method of training the models is supervised, the action is defined by the data
in the training set. There is no limit on how “primitive” an action needs to
be with respect to the manipulation process; depending on the user’s need,
the semantic model could be trained to either model a small part of the
manipulation, or the whole assembly from start to end. In the experiments
in this paper we portray with former case. We use the term “task” to denote
the whole manipulation process (e.g. task of opening the box) and the term
“action” to denote an integral part of the task (e.g. reaching for the lid).

Construction of the proposed semantic models thus starts with system
observing several demonstrations of a particular action. Semantic model
of the action is then obtained by discretizing phase space and calculating
probability of observing semantic events for all phase intervals. The most
important insight for our work is that while many of detected events are
due to noise, the ones which relate to real changes in the scene will be de-
tected consistently throughout demonstrations at similar phases. Provided
with a sufficiently large training set, their occurrence can be probabilistically
modeled.

From each demonstration the semantic events are extracted in the form
of a so called semantic event sequence. Denoted here by E, semantic event
sequence is an indicator function over the time domain. Defined at every
time step t, it takes a discrete value, denoting whether a semantic event was
recorded at that particular time step or not. Hereinafter, we will refer to it
as taking value 1 for “recorded” and 0 for “not recorded”. Formally, this can
be written as binary function

E : [0, t] 7→ {0, 1}. (1)

Therefore, whenever a new object segment is recognized in the scene, disap-
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pears from the scene, or a pair starts to touch or overlap or stops doing so,
E takes value 1. This includes cases where an image segment was recognized
as a new object after occlusion or rotation, which caused that what used to
be backside is now visible, when two objects are detected as touching due to
noisy depth information, and other outcomes causing noise in our data.

2.1. Phase mapping

When a human performs an action, the speed of execution is not constant
over different performances of the same action. We therefore first normalize
the timing of the recorded data:

Φ : t 7→ φ

φ(t) =
t− t0
tend − t0

, t0 ≤ t ≤ tend. (2)

Variable φ is called phase and starts at 0 and finishes with 1. This way
we achieve independence of our data from time scale, which enables us to
compare examples of different durations.

After the transformation, we obtain a semantic event sequence defined
over the domain of φ, such that E ′(φ) = 1 for each phase φ where a semantic
event occurs and zero for all other phases:

E ′ : [0, 1] 7→ {0, 1} (3)

E ′ = E
(
Φ−1(φ)

)
(4)

Note that there exist other possibilities for defining the phase mapping. For
example, dynamic time warping [31] could be used for better temporal align-
ment. See Section 3.3 for discussion on time warping and normalization of
time.

2.2. Training

Provided with a large enough set of training data, consisting of Nex se-
mantic event sequences {E1, . . . , ENex}, where En is a recording of E ′ during
n-th execution of the given action, we can find the frequencies of event occur-
rences over the action phase. We start by dividing the phase into Ns discrete
bins

S = {s1, s2, . . . sNs}. (5)
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Each consecutive state si models successive parts of the phase interval
[0, 1], which are determined as

Ψi =

[
i− 1

Ns

,
i

Ns

)
, i = 1 . . . Ns − 1, (6)

Ψi =

[
i− 1

Ns

,
i

Ns

]
, i = Ns. (7)

We continue by defining the number of observed events in a given state
during training, denoted here by N tr

i

On
i =

{
1, ∃φ, such that φ ∈ Ψi ∧ En(φ) = 1

0, otherwise
, (8)

N tr
i =

Nex∑
n=1

On
i . (9)

Simply, if one or more events occurred during phase interval Ψi in a particular
training sequence En, On

i will be one. If no semantic events were detected, On
i

will be zero. N tr
i is a summation over the complete training set and provides

us with the number of training examples which had at least one event occur
during phase interval Ψi.

We can now calculate the parameters of our model. It is a probabilistic
model, consisting of several states, each of which corresponds to a phase
interval. The phase variable takes care of progressing through the states;
starting in state s1 at the beginning of an action and ending in the final state
sNs at the end of the action. Upon visiting a state si, the process outputs a
discrete random observation variable Oi, which can take two possible values,
corresponding to whether a semantic event has been observed or not. The
output probabilities for state si are given as

P (Oi = 1) =
N tr

i

Nex

, (10)

P (Oi = 0) = 1− P (Oi = 1). (11)

Probability of observing an event during a certain phase interval is propor-
tional to the number of training examples which did produce an event during
that part of the action. This way, states with high probability P (Oi = 1)
signify that for the given action, semantic events are very likely to occur
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during the corresponding phase intervals. Likewise, it is less likely to observe
semantic events in phase intervals with high probability P (Oi = 0).

The output probability defined above is a measure of how probable the
observation of an event is for a particular action. If an event occurred during
a certain phase of the action every time the action was executed, it is unlikely
to be just a result of a noisy observation. The opposite holds for states with
unobserved events; if an event was observed during training just in a few
of the examples, then it is most probably not an integral part of the action
execution, but instead a result of sensory noise.

We write the calculated probabilities into the observation matrix B, with
dimensions 2×Ns, such that

B1,i = P (Osi = 0)

B2,i = P (Osi = 1).
(12)

Thus our semantic model is fully defined by

λ = {Ns,B}. (13)

See also Figure 2 for illustration of the proposed framework.

2.3. Action recognition

We can use the learned models to evaluate similarity scores for an ob-
served action. Suppose we observe a demonstrator execute a manipulation
action and record a semantic event sequence E∗. We want to calculate the
likelihood of this signal belonging to one of the trained action models.

After normalizing the timing using Eq. (4), we check for each of the Ns

phase intervals whether there were any events or not. That is:

O∗i =

{
1, ∃φ, such that φ ∈ Ψi ∧ E∗(φ) = 1

0, otherwise
. (14)

Similarity of the unknown action versus some model λ is then obtained
by computing the likelihood of the model outputting the sequence O∗ =
(O∗1, ...O

∗
Ns

). This corresponds to a product of probabilities of each state out-
putting the observed value. Logarithm of the computed likelihood is used to
avoid very small numbers in models with a high number of states. Formally

L∗ = log (P (O∗|λ)) =
Ns∑
i=1

log (P (O∗i |λ)) , (15)
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Figure 2: Overview of the proposed probabilistic model. It consists of discrete number of
states, each corresponding to an interval of the action phase. As the phase progresses, so
does the model in a left to right fashion through all the states. Upon visiting a state, a
discrete symbol is output. The output symbol can be either 1, corresponding to semantic
events being observed, or 0, corresponding to no events occurring during the particular
interval, corresponding to the active state. The output probabilities are trained and eval-
uated according to indicator signal E , which indicates observations of semantic events in
the recorded data.

where

P (O∗i |λ) =

{
B1,i, if O∗i = 0

B2,i, if O∗i = 1
. (16)

An observed action can then be classified as belonging to the action model
for which L∗ is the highest. Alternatively, if the likelihood is lower than some
threshold value for all available models, we can conclude that the recorded
action is something not observed before. This threshold can be selected by
computing likelihoods for a number known sequences of a particular class
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(cross-validation set, not used in training) and taking the lowest obtained
likelihood.

Note that for models in which the output probabilities of any state are 0
for observing an event, the resulting likelihood will be equal to zero for any
examples with observed events in the particular state, regardless of potential
matching in all other states. The same is true if the probability of not ob-
serving is zero, but the recorded sequence does contain such an observation.
To avoid this problem, some threshold ε can be set for minimum and maxi-
mum values of B, such that B1,i = ε, if P (Oi = 0) < ε and B2,i = 1 − ε, if
P (Oi = 1) > 1 − ε. If a cross-validation set is available, it should obviously
be used to obtain this parameter as well. ε is chosen as the value, for which
the performance on the cross-validation set is the best.

2.4. Verification with low level models

In order to distinguish action classes which exhibit similar patterns in
terms of semantic events, lower level information can be used. We chose
to utilize parametric hidden Markov models (PHMM) to encode execution
trajectories for their discriminative, generative and generalization properties.
PHMM is an extension to HMM, where the observation distributions depend
on external parameters.

HMM is a Markov chain where each state corresponds to random output
with some probability density. When representing motion trajectories the
states are connected in a left-to-right structure and present discretized pro-
gression of time. State output corresponds to position coordinates, and is
distributed according to a continuous Gaussian probability density function
(PDF). The parameters (mean and covariance) of the density function are
estimated during training with Baum-Welch algorithm [22]. In PHMMs, the
means of the PDF are floating: they are dependent on external parameters
via a linear mapping

µi(θ) = Wiθ + bi, (17)

where µi is the mean of the PDF, Wi is a matrix of coefficients, bi is y-
intercept, i is state index and θ are the external parameters. Both Wi and
bi are extracted from training data using a modified version of Baum-Welch
algorithm for parametric hidden Markov models [30].

In our case, we defined the parameters θj for trajectory j as average x, y
and z coordinates of the trajectory. This way we captured spatial variations
of the executions: the same model was used to apprehend executions of a
given action irrespective of where on the table the action took place.
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When using PHMMs for evaluation of unknown trajectories, the parame-
ters θ are first extracted from the data. The observation is then compared to
all known models using the forward algorithm [22], where means of the state
observations are calculated by Eq. 17 using the extracted θ. The match-
ing between the unknown trajectory and a selected model is obtained by
calculating the likelihood of the model outputting the exact same sequence
of samples that forms the unknown trajectory. The trajectory can then be
classified as belonging to the model with the highest likelihood.

PHMMs have been previously used for trajectory learning, recognition
and reproduction in robotics [29, 32]. However, these authors only considered
the recognition of presegmented sequences and did not use semantic relations
between objects.

3. Evaluation

In this paper we evaluate the proposed approach on several manipulation
tasks. These were milk pouring (20 examples), cereal pouring (23 examples),
opening a box (21 examples), opening a bottle (20 examples), and finally, a
peg-in-a-hole insertion task (12 examples). All recorded tasks consisted of
three actions. First, the demonstrator reached for the object, then performed
the main action, and finally withdrew from the object. See figures 3 and 7
for illustration of what the experiments looked like.

For semantic event detection we used RGB-D camera Kinect. Regions
with uniform color and continuous 3-D surface were segmented from the
background. This way we got a crude approximation of events between
objects. Segment relations were then monitored and changes (touching, not-
touching, appearing, disappearing) detected as explained in [10, Appendix 1].
This way we calculated function E(t) as explained in Section 2, i. e. E(t) = 1
if a change happened at time t, and E(t) = 0 otherwise. See Figures 5 and
16 for typical examples of semantic event sequences in milk pouring and
peg-in-a-hole tasks, respectively.

Execution trajectories were recorded with NDI 3dInvestigator motion
capture system, which uses active markers to record 3-D trajectories. The
data was modeled with PHMM as explained in Section 2.4. Rotation data
was not used in the evaluation.

The evaluation consists of three parts. In Section 3.1 we present results
for extraction of actions from longer observation sequences. In Section 3.2
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Figure 3: Video stills from the performed experiments. From top to bottom: pouring
(chocolate) milk, pouring cereal, opening box, opening bottle, peg-in-a-hole.

we analyze general, all-vs-all action recognition properties of the novel prob-
abilistic semantic models, similarity comparison between models using his-
togram distance measures, as well as recognition performance of lower level
trajectory models. In Section 3.3 we compare phase mappings with uniform
normalization of time and dynamic time warping.

3.1. Extraction of actions from observation

In this section we present results for top down search for actions in longer
observations, such as the case where robot observes a human, looking for
actions it already knows. This is a computationally expensive effort; for an
observation sequence O of length, i. e. number of samples, T , there exist
T (T+1)

2
possible subsequences. In order to locate an action, all these subse-

quences have to be checked with the action model, barring those exceeding
some preset maximum or minimum subsequence length. In our case, all the
subsequences were evaluated on the semantic level using the proposed prob-
abilistic model first. Thirty best matches were passed to the lower level and
evaluated using trajectory models. The subsequence with the best score was
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the final result.
The models were trained using roughly three quarters of randomly se-

lected examples for each task. The segmentation of tasks into actions was
done manually for the training set, as well as to provide ground truth for the
test set. Number of states of the models was 10 for the semantic models and
50 for the PHMM.

3.1.1. Milk pouring

We first focus on the milk pouring example. Figure 7 shows stills from
a typical recording of the milk pouring task and Figure 4 shows the trained
semantic models. Clearly, the models are distinctive for each action. They
can be easily interpreted. For the first action (“grasping the milk”) there is
low probability of observing events at the very beginning and higher proba-
bility in the second half of the action. The events in the states around the
middle are due to manipulator’s hand appearing in the scene; the higher
values towards the end of the movement correspond to manipulator grasping
the box. As the detection of touching from vision is unreliable in this case,
the recorded events are spread over the last few states. Over the course of
the second action (“pouring”), there is a lot of movement going on. The
milk pack is taken to the bowl, rotated around, milk flowing, splashing, and
so on. All this results in a stream of semantic events recorded throughout
the whole action phase, as evident by non-zero probabilities for all states of
the model. For the third action (“withdrawing”), we can see some events
at the beginning, which correspond to the hand and the milk box ceasing
to touch. The rest of the action is the hand moving away from the objects,
which, typically, does not cause semantic events.

For evaluation, 5 examples were tested, which were not used during train-
ing. Testing all possible subsequences, probabilistic semantic models were
used to identify those which had good similarity with the sought action.
Due to the vast number (T (T+1)

2
) of possible combinations, there are many

subsequences that exhibit a given pattern of semantic events. Therefore,
validation with low level features is needed in order the identify the best
matching subsequence.

The thirty subsequences which were passed to the lower level can be seen
in Figure 6. It can be seen that some of the selected subsequences are very
similar. In fact, these subsequences have the same score according to the
semantic models. This is due to the discrete nature of our model: moving
the subsequence a couple samples left or right does not have any effect on
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Figure 4: Trained models for the three actions comprising the milk pouring task. From
left to right: grabbing the box, pouring, letting go of the box. The bars show probabilities
of observing a semantic event in the given state.

t*30 [s]

0 500 1000 1500 2000

Figure 5: Semantic event sequences for 10 examples of the milk pouring task. The samples
where E(t) = 1, signifying that a semantic event happened, are marked with ’x’. Green
dots indicate grasping, magenta dots indicate pouring, and cyan dots indicate withdrawing
actions.
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Figure 6: Action extraction hypotheses for grasping action in one of the milk pouring test
examples. All possible subsequences of the recorded semantic event sequence during task
observation (each event occurrence marked with black “x”) were evaluated with learned
probabilistic semantic model (abbreviated PSM in the figure) for action number 1 (Fig. 4,
left). Thirty best-matching subsequences are shown with blue lines. The graph shows that
most of them identify parts of the recording, which exhibit the pattern of events being
recorded towards the end. This is exactly what the model of the grasping action suggests.

its semantic score, as the relevant events fall into the same state. Therefore,
the number of states used by the model defines the resolution of the action
phase. The best subsequences were further evaluated with trajectory models
(PHMM). The subsequence with the best score was then accepted as the
final result.

The three basic actions of the task (grasping, pouring, withdrawing) were
considered separately. This means that for each of them, evaluation with
the action’s semantic model was followed by evaluation with the action’s
PHMM. The obtained final best subsequence was then labeled as “the ac-
tion”, whereas all other samples of the observation sequence were labeled as
“not belonging to the action”.

The accuracy of the extracted segments for each evaluated case was cal-
culated at the sample level as the ratio between samples that were classified

17



Figure 7: A sequence of images taken from observation of the milk pouring task, also
shown in Figure 6. The frames were extracted at time instants when semantic events were
recorded. Each frame corresponds to a consecutive event occurrence, marked with “x”
in Figure 6. This graph shows that even in a simple milk pouring scene, which did not
contain any clutter, the objects are not segmented perfectly. As a result, many semantic
events are detected. For some of them it is not immediately clear which change in semantic
relations triggered them (e. g. frames no. 189 and 224 show the same semantic situation).
In fact, only five “real” semantic events happened during task execution: hand appeared,
hand touched the milk box, milk appeared in the bowl, hand released the box, hand
disappeared. These correspond to frames 113, 189, 363, 549 and 562, respectively. All
other semantic events are consequences of noise.
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Figure 8: Results for the milk pouring task. The graphs show Cartesian trajectories
of the execution; the blue lines at the bottom of each graph show calculated segments,
corresponding to individual actions.

correctly and the total number of recorded samples in the observed sequence.
The final result was computed by averaging across all of the tested examples:

Accuracy =
1

Nex

Nex∑
i=1

1

N i
a

N i
a∑

j=1

N correct
j,i

Ti
, (18)

where Nex stands for the number of tested examples (recordings) and N i
a

denotes the number of actions in the example i. N correct
j,i denotes the number

of samples in recording i that were correctly classified when evaluating action
j. Note that true positives as well as true negatives are included in N correct

j,i .
Ti denotes the number of samples in recording i. Ground truth sample labels
were provided manually. Figure 8 shows the results. It is evident that the
extracted segments overlap with the ground truth. The accuracy for the milk
pouring task was 0.90.

3.1.2. Cereal pouring

Next, we switched milk with cereal. This allows for an interesting com-
parison, as cereal is much less homogeneous in appearance and thus the
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Figure 9: Trained models for the three actions of the cereal pouring task. From left to
right: grasping the cereal box, pouring, letting go of the box. The bars show probabilities
of observing a semantic event in the given state.

results of image segmenting algorithm are even more unpredictable. As a
consequence, the learned semantic models for the pouring action are differ-
ent compared to the milk pouring, as evident by comparing Figures 4 and
9. For the “grasping” and “withdrawing” actions, on the other hand, the
models are similar.

In total, 23 examples of the cereal pouring task were recorded and 8
of them used as a test set. Results are shown in Figure 10. The average
accuracy (as per Eq. (18)) for cereal pouring task was 0.92.

3.1.3. Opening a box

In this experiment, demonstration started with a chocolate box, sitting
on the table. The demonstrator then opened the box using both of his hands
and put the lid on the table next to the box. Finally, the demonstrator
withdrew his hands from the scene. The learned semantic models can be seen
in Figure 11. Comparing with the “grasping” and “withdrawing” models of
the pouring tasks, we can notice that they are similar. Higher probabilities
in the second part of the grasping action are likely the result of using both
hands to reach for the box as opposed to the pouring tasks, where just one
hand was used. This caused a higher number of events.

Extraction results for the box opening task are shown in Figure 12. The
average accuracy was 0.89 for the test set, which was composed of 6 out of
21 recorded examples.

3.1.4. Opening a bottle

Semantically, box opening and bottle opening are similar tasks. However,
the way in which the task is accomplished, is different. Opening a box
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Figure 10: Results for the cereal pouring task. The graphs show Cartesian trajectories of
the execution; the blue lines at the bottom of each graph show calculated segments, cor-
responding to individual actions. As can be seen, the system had some trouble extracting
action number 3; in almost half of the examples the calculated segment is significantly
shorter then the ground truth, shown with a dotted line. Nevertheless, the result is ap-
proximately correct.
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Figure 11: Trained models for the three actions of the box opening task. From left to right:
grasping the box, opening, letting go of the box and the lid. The bars show probabilities
of observing a semantic event in the given state.
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Figure 12: Results for the box opening task. The graphs show Cartesian trajectories
of the execution; the blue lines at the bottom of each graph show calculated segments,
corresponding to individual actions. The performance is comparable to other tasks.
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Figure 13: Trained models for the three actions of the bottle opening task. From left to
right: grasping the bottle, unscrewing the cap, letting go of the bottle and the cap. The
bars show probabilities of observing a semantic event in the given state.

consists of picking up the lid and placing it aside, while the bottle’s cap
needs to be unscrewed. Naturally, this means different execution trajectories.
However, comparing middle graphs in Figures 11 and 13, it can be seen
that probabilistic semantic models for the respective actions (opening and
unscrewing) are also somewhat different. Namely, the unscrewing action
model shows high probabilities of semantic event detection all across the
phase, which is the result of unscrewing motion of the hand. The hand is in
constant movement, touching and un-touching the bottle at multiple points.
Such movement poses a big problem for the image segmentation algorithm,
which results in noisy detection of semantic events.

For this task, 20 examples were recorded, out of which 15 were used for
training and 5 for the test set. Action extraction results with the learned
models are shown in Figure 14, with the average accuracy of 0.89.

3.1.5. Peg in a hole

Finally, we performed an experiment with demonstrator showing execu-
tion of the “peg-in-a-hole” task. In this task, the demonstrator was asked
to perform a step of Cranfield assembly benchmark [33], which consists of a
square peg being put into a quadratic hole. In total, 11 recordings of this
experiments were made, 8 of which were used for training and 3 for testing.
As opposed to other experiments, there was much more clutter on the table,
such as cables and instruments. There were also more variations in execu-
tion, as the demonstrator sometimes used a different hand to help insert the
peg. Figure 16 shows ten semantic event sequences for the task. Compared
to Figure 5, which shows events in milk pouring examples, the peg-in-a-hole
examples exhibit much more noise. As can be seen in Figure 15, which shows
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Figure 14: Results for the box opening task. The graphs show Cartesian trajectories
of the execution; the blue lines at the bottom of each graph show calculated segments,
corresponding to individual actions. The system had some trouble extracting segment
number 2, overshooting it in most of the examples.
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Figure 15: Trained models for the three actions of the peg in a hole task. From left to
right: grasping the peg, inserting the peg into the hole, letting go of the peg. The bars
show probabilities of observing a semantic event in the corresponding states.

the trained models, the increased measurement noise results in high output
probabilities all across the execution. This is especially evident in the model
for the third (“withdrawing”) action, which demonstrates a shape with two
peaks, which is unique compared to similar actions from other tasks. Still,
the models are clearly action-discriminative.

Figure 17 shows action extraction results for peg in a hole experiment.
The extracted segments correspond relatively well to the ground truth despite
noisy measurements. The resulting overall average accuracy for the peg in a
hole task is 0.89.

3.2. Cross task comparison of actions with probabilistic semantic models

To further evaluate the performance of the proposed probabilistic seman-
tic models we provide comparison of actions with models from different tasks.
The actions were segmented manually and the resulting sequences were com-
pared to all of the models and the likelihood computed according to eq. (15).
No trajectory data was used in this test.

The resulting confusion matrix is shown in Figure 18. Each row cor-
responds to a recording (sequence of semantic events) of an action. Each
column corresponds to a probabilistic semantic model of the given action.
The models and the recordings are grouped by tasks, e. g. the first three
models and the first 60 recordings come from the milk pouring tasks.

The color of each cell represents the likelihood of event sequence in the
corresponding row being output by the model of the corresponding column.
Warmer colors represent higher likelihoods, while colder colors represent
lower likelihoods. The likelihood was obtained by averaging the result of
all possible models built with the training set consisting of approximately
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Figure 16: Semantic event sequences for 10 examples of the peg-in-a-hole task. The
samples where E(t) = 1, signifying that a semantic event happened, are marked with
’x’. Green dots indicate grasping, magenta dots indicate inserting the peg, and cyan dots
indicate withdrawing actions.
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Figure 17: Results for peg in a hole task. The graphs show Cartesian trajectories of
the execution; the blue lines at the bottom of each graph show calculated segments,
corresponding to individual actions. The noise in measurements results in slightly lower
performance compared to previous experiments.
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three quarters of the remaining examples for the particular action. For ex-
ample, there are 21 box-opening examples. For each one example, there exist(
20
15

)
= 15504 possible training sets consisting of 15 out of the remaining 20

examples. All the possible 15504 models are trained and used to evaluate
the likelihood of the current example. The likelihood shown in Figure 18 is
the average of all the obtained likelihoods for the example.

The emerging pattern shows the properties of the proposed method. Most
importantly, the diagonal elements exhibit warmer colors than the rest of the
matrix, meaning that comparing an action with its own model we get high
likelihood. Another interesting result is high likelihood of actions with re-
spect to models of similar actions, but from different tasks. For example,
grasping action from box opening task gets a high likelihood also for the
grasping models from the milk pouring and bottle opening tasks. This be-
havior is, however, not completely consistent. For example, the likelihood
of the grasping model of the peg-in-a-hole task is quite low for the same
box-grasping examples.

Some of the examples also show high likelihood where the model and
the action clearly do not belong together. For example, “placing into hole”
model gives high likelihood for cereal pouring and withdrawing actions.

In summary, our results show that probabilistic semantic models provide
basic recognition of actions. However, as there are false positives, they need
to be used in combination with lower level models based on trajectory data.
In combination they provide a powerful action extraction and recognition
mechanism. This confirms what was already noted in Sections 2.3 and 2.4.

3.2.1. Histogram distance based comparison of models

Apart from using the learned semantic models to evaluate unknown obser-
vations, the models themselves can be compared to one another. This opens
the possibility for the robot to reason about semantic differences between
actions and combine models which are determined to be similar.

Methods for histogram comparison can be used for this purpose. Dif-
ferent metrics have been previously proposed, such as Quadratic-Form [34],
Chi-Squared [35], or Earth Mover’s distance [36]. Figure 19 shows the con-
fusion matrix obtained when comparing the models by the Earth Mover’s
method. Interestingly, the result suggests that similar models according to
this metric are the grasping actions of milk pouring compared to grasping
of both opening tasks, withdrawing actions of the opening tasks, as well as
box opening, bottle opening, milk pouring, and peg grasping actions. In a
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Figure 18: Recognition of actions across all recorded tasks. The recordings were preseg-
mented and probabilistic semantic models trained for each class. Color of each cell in
the matrix corresponds to the likelihood of a given model outputting the given sequence,
calculated according to Eq. (15).
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way, this corresponds to results obtained in Section 3.2, where, for example,
many “grasping box” recordings in Figure 18 received high likelihoods for
the model of “grasping milk”. On the other hand, this does not seem to
be the case for the “grasping bottle” recordings, which received generally
lower likelihoods for the same case, even though the corresponding case in
Figure 19 suggests that their models should be similar.

The biggest problem with histogram comparison is that there is no def-
inite metric which would be the best to utilize. It must be chosen by the
user according to the problem at hand. One must thus be careful when qual-
itatively evaluating the differences between histograms, as comparisons with
different metrics produce different results.

3.2.2. Cross task comparison of actions with trajectory models

Here we present results for comparison of the actions based on trajec-
tory data only. This is a hard problem, as even humans have trouble dif-
ferentiating between actions of another person based on their trajectories
without other context. Consider for example, a game of pantomime, which
is non-trivial in spite of exaggerations in the demonstrator’s movement. In
manipulation tasks, the differences between trajectories are much more sub-
tle. Figure 20 illustrates performance of the low-level PHMM models in our
experiments. Due to computational complexity of the training and testing
algorithms, it was not possible to perform the exhausting evaluation with all
training set combinations in the same way as with the semantic models. In-
stead, the training and testing set were chosen randomly with 3

4
of examples

belonging to training set and 1
4

to testing set. As you can see, the trajectories
generally received high likelihoods for the corresponding “correct” models,
however there are many cases where high likelihoods were calculated for com-
pletely unrelated recording-model pairs. This confirms that comparison of
actions based on trajectories alone would not be sufficient in this case, as the
context of objects plays a key role.

3.3. Dynamic Time Warping

In Section 2 we presented a way to normalize demonstration sequences
to a common phase. The mapping defined in Eq. 2 uniformly shrinks the
sequences into the specified phase interval. This approach does not take into
account the fact that demonstrations may vary not only in their duration, but
also in their temporal profile. For example, the same action can be executed
quickly in the beginning and slowly towards the end, or vice versa. Dynamic
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time warping (DTW, [31]) is a technique which can be used to align two
sequences by warping their temporal profile. It has been previously applied
to motion trajectories [37][38]. However, the standard DTW approach suffers
from quadratic computational complexity and can only be used for alignment
of two sequences. For these reasons, Zhou et. al [39] presented Generalized
time warping (GTW), which does not have these drawbacks. GTW defines
the temporal profile of a trajectory as a combination of non-linear functions
and finds the optimal solution by optimizing their weights.

In our case, GTW can be applied to demonstration trajectories in order to
obtain a warped temporal profile for each example. This profile is then copied
to semantic event sequence function E and transformed into the required
[0, 1] interval. Before testing, unknown actions are aligned using the same
principle. This way, it also becomes important “where” the events occurred
rather than just “when”, as events occurring around similar parts of paths
get grouped together. See Figure 21 for illustration, which shows original
and time-warped case for 15 examples of the grasping action of the milk
pouring task. The upper graph shows execution trajectories, the middle
one sequences of semantic events, while the resulting models are shown in
the bottom graph. Clearly, you can see that the trajectories in the right
graph are lined up compared to the original case, as there is less empty
space between individual lines. This resulted in slightly different placement
of some of the semantic events on the action phase. For example, the events
of examples number 13 and 15, which were in the third discrete bin in the
original case moved to the fourth bin in the warped case. Such differences
resulted in slightly different semantic models being trained on the respective
sets. Earth mover’s distance between the two histograms is 0.39, which is
rather small.

Figure 22 shows results of recognition for both of the semantic models.
The figure shows log likelihood obtained when testing all available recordings
(except those used for training) with the obtained models - the left graph
shows results for the original case, while the right graph shows results for the
aligned case. As you can see, there is not much difference in the performance
of both models.

These results indicate that, for the experiments presented in this paper,
phase mapping with uniform scaling of time (Eq. (2)) is sufficient. The
difference in temporal alignment of detected events is largely compensated for
by discretization of phase, and thus the difference between the original model
and the GTW-aligned model is too small to have an impact on recognition
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performance, let alone justify the extra computational expense.

4. Discussion and conclusion

In this paper we presented a hierarchical approach capable of extracting
known actions from observation sequences. The main novelty of our approach
is the higher level representation with probabilistic semantic models. These
are calculated from temporal sequences of semantic events, which denote
changes in semantic relations between objects.

Semantic events are extracted from machine vision. This process is in-
trinsically unreliable and prone to noise. The main feature of the proposed
models is that the events are modeled probabilistically, and thus robustness
against noise is achieved. Detection of semantic events using a simple system
based on uniform color and shape properties of objects proved to be effective
enough to result in semantic models with good discriminative properties.

The models are built by calculating the probability that execution of a
given action results in detection of semantic events during a particular inter-
val of the action phase. We do not take into account information about which
objects triggered the event, nor what type of a relational change happened.
The only important information is when during the action phase the event
occurred.

This is in contrast to the semantic event chains, as presented in [10].
They annotate semantic relations for each pair of objects separately, where
objects are approximated with image segments and each image segment is
identified with a label. The temporal information is preserved partially: it is
evident from a chain in what sequence the events happened.

The work by Luo et al. [18] also deals with semantic event chains and
noise. They transform the chains into semantic string representations and
then use string kernels to evaluate similarity between strings of different
recordings. Interestingly, they also make the event chains less descriptive in
the process. The semantic strings are constructed by collapsing rows in the
event chains to only contain the changes without repeating relations. This
way, information about which event happened before or after another is lost
for all events that are not caused by the same pair of image segments. It
could thus be argued that by achieving robustness to noise, we neglect the
association of semantic events to specific object or image segment pairs, while
they neglect the temporal aspect.
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Figure 21: Time warping for grasping action of the milk pouring task. The left side
shows the original case, while the right side shows the result after GTW was applied for
temporal alignment. The top graphs show trajectories of 15 examples, the middle graphs
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semantic models. The alignment resulted in slight difference between the models.
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Figure 22: Recognition performance for grasping action of the milk pouring task. The
left graph shows the original case, while the right graph shows the result for the model
obtained after GTW was applied. The models were trained using 15 examples of grasping
action from the milk pouring task, shown in Figure 21. The leftmost green shaded area
on both graphs consists of the testing set of the same milk-grasping action, while other
green shaded areas correspond to grasping actions from other tasks. Similarly, red and
blue shaded areas consist of second and third actions of each task, respectively. As you
can see, the likelihoods obtained for the original and the aligned model exhibit a rather
similar pattern.
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The probabilistic semantic models are therefore less descriptive compared
to event chains or semantic strings in terms of association of semantic events
to specific object or image segment pairs; they are however more descriptive
from the temporal standpoint, as they carry information about likelihood of
occurrences of events for all parts of the action phase.

The fact that the proposed probabilistic semantic models are defined in
the action phase domain allows for easy coupling with arbitrary low level
models. In this paper we utilized parametric hidden Markov models to en-
code motion trajectories as lower level action representation. This allowed
us to perform action extraction from observation sequences in two stages.
First, the upper level model was used to search for subsequences which ex-
hibited the desired pattern in terms of semantic events. The subsequences
with the best fit were then used as hypotheses for the trajectory level and
evaluated to find the final result. The reasoning behind this approach is
that the semantic models are much faster at evaluating unknown sequences
than Markov models. Computational complexity of evaluating an unknown
trajectory (subsequence) with PHMM is O(M2

sN), where N is number of
samples in the subsequence and Ms number of states in the model. The
average length N of all subsequences of a sequence of length T is T+2

3
, there-

fore the complexity of the whole search process with PHMM is O(M2
s T

3).
Typically, the number of states Ms would be in the tens, while T could be
in the hundreds or thousands. On the other hand, the proposed semantic
models only evaluate the score of a sequence at the discrete states, corre-
sponding to phase intervals. Therefore, summation over the states is all that
is needed. The complexity of the search process with the semantic models is
thus O(T 2Ns), where Ns is the number of states of the semantic model.

On the hand, the trajectory models are needed because many actions
can be semantically similar, yet different. These are differentiated by their
execution trajectories. Note, however, that full-scale recognition using tra-
jectories only is also difficult in case of manipulation actions. Nevertheless,
they proved to be discriminative enough to distinguish between hypotheses
selected from the sequences with good match at the semantic level.

Another important aspect in favor of using both a semantic as well as
trajectory model in a hierarchical way is that in manipulation tasks, the
changes in semantic relations usually relate to the intent of the manipulator’s
actions. This way, by combining probabilistic models of semantic events with
lower level features, such as execution trajectories, we bring together the
effects (i. e. changes in semantic relations) and their cause (the movement)
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in a common generative framework.
The number of states in the proposed action model is a hyperparameter,

which needs to be set for each action. Note that while the results of our
experiments were good even without putting much effort into the choice of
the hyperparameter, the selection could be relatively simply automated by
cross validation techniques [40]. However, a bad choice for the number of
states could lead to a diminished performance. For this reason, one of our
future focuses will be on the development of continuous formulation of the
action representation, using for example kernel density estimation techniques
[41, 42] to approximate event distributions. This way, division of phase into
states would no longer be needed and event observation likelihood would
be represented with a probability density function defined over the whole
phase. Such models would certainly have some advantages. For example, in
the present, discrete case, it is not important whether one or several events
are detected in a single phase interval. Events that occur in sequences quicker
than the resolution of the phase space permits are lost. This would not be
the case with the continuous approach. Note, however, that kernel density
estimation methods generally require some hyperparameters to be set as well.

In the experiments presented in this paper uniform normalization of time
was used to transform recordings into phase space. Time warping techniques
can be used to compensate for temporal variations within sequences. How-
ever, in our experiments we did not find much inequality between models
trained from uniformly normalized data and time warped data.

Future prospective work includes expanding the approach to semantically
higher levels on one hand and towards the robot execution on the other hand.
Probabilistic semantic models are higher in abstraction than execution spe-
cific features, but still short of a full scale representation of task semantics,
such as semantic event chains. We believe that probabilistic semantic models
can be used to help with the construction of semantic event chains, because
the major problem in their construction from real time observation data is
oversegmentation due to vision noise. Probabilistic semantic models could
be used to reason about recorded events’ likelihood and therefore reject er-
roneous events.

Probabilistic semantic models could also be utilized to support the robot’s
own action execution. As they provide a model of the intended consequences
of a manipulation action, they can be used as a metric of success. By moni-
toring semantic events in the scene during execution, the parts of the action
phase where the robot’s movement results in different semantic events than
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expected can be quickly identified. This way, the robot can autonomously
identify which portion of the execution trajectory needs to be adapted (e. g.
by using reinforcement learning [43]) in order to improve the result of the
manipulation.
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