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Abstract The ability to estimate Cartesian space trajectories
that include orientation is of great importance for many
practical applications. While it is becoming easier to
acquire trajectory data by computer vision methods,
data measured by general-purpose vision or depth
sensors are often rather noisy. Appropriate smoothing
methods are thus needed in order to reconstruct smooth
Cartesian space trajectories given noisy measurements.
In this paper, we propose an optimality criterion for
the problem of the smooth estimation of Cartesian space
trajectories that include the end-effector orientation.Based
on this criterion, we develop an optimization method for
trajectory estimation which takes into account the special
properties of the orientation space, which we represent by
unit quaternions.The efficiency of the developed approach
is discussed and experimental results are presented.

Keywords Unit Quaternions, Nonlinear Optimization,
Robot Programming by Demonstration

1. Introduction

The estimation of human hand motion is an important
problem for many applications. Our interest stems from
programming by demonstration [1] (also called ’imitation
learning’) in robotics. Figure 1 shows an example of
a programming by demonstration system where a robot
is guided to perform a classic peg-in-hole task [2]. The

goal of imitation learning is to provide robotic systems
with the ability to relate perceived human actions to their
own embodiment in order to learn - and later perform
- the demonstrated actions [3]. In imitation learning,
knowledge about the demonstrated human hand motion is
often essential for the understanding of the demonstrated
behaviour.

Ignoring the fingers, we normally encode hand motion as
a rigid body motion. It is well known that rigid body
motion consists of a translational and a rotational part [4].
The reconstruction of a pure translational motion can be
accomplished by standard optimization methods, because
the set of all translations forms a three-dimensional (3D)
vector space. On the other hand, the set of all rotations in
the 3D Cartesian space, which we denote by SO(3), forms
only a group and not a vector space. The special Euclidean
group SE(3) is defined as a semi-direct product of R3

and SO(3). It represents the Euclidean transformation
of rotation followed by translation. Unfortunately, there
exists no representational scheme for rotations that
would be simultaneously non-redundant, continuous
and free of singularities [4]. This causes problems
when solving optimization problems for SO(3) because
representations free of singularities (e.g., rotation matrices
and quaternions) contain more than the minimal number
of parameters. The resulting parameters are therefore not
independent of each other.

Aleš Ude: Estimation of Cartesian Space Robot Trajectories Using Unit Quaternion Space 1

ARTICLE

Int J Adv Robot Syst, 2014, 11:137 | doi: 10.5772/58871

1 Jožef Stefan Institute, Department of Automatics, Biocybernetics and Robotics, Ljubljana, Slovenia
* Corresponding author E-mail: ales.ude@ijs.si

Received 25 Jun 2013; Accepted 16 Jun 2014

DOI: 10.5772/58871

∂ 2014 The Author(s). Licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Aleš Ude1,*

Estimation of Cartesian Space Robot 
Trajectories Using Unit Quaternion Space
Regular Paper

International Journal of Advanced Robotic Systems



One possibility for measuring human arm and hand
motion is to use RGB-D sensors, e.g., Kinect. The Kinect
sensor uses the principle of structured light and captures
depth and colour images simultaneously at a frame rate of
about 30 Hz [5]. Together with the appropriate software,
Kinect enables the tracking of several joints on the human
body, including hand position and orientation [6, 7]. No
special markers are needed. This results in a sequence of
noisy measurements of the form:

(tk, p∗
k , q∗k , Σk), k = 1, . . . , n, (1)

where tk are the measurement times, p∗
k ∈ R3 the

measured positions, q∗k ∈ S3 the measured orientations
represented by unit quaternions, and Σk ∈ R6×6

the covariance matrices describing the uncertainties in
the measured position and orientations (see Section
3). Alternatively, such data can be obtained from
marker-based systems, e.g., Optotrak. While the unit
quaternion space S3 does not uniquely represent SO(3)
(i.e., for every orientation there are two equivalent unit
quaternions), this duality does not represent a practical
problem because the two unit quaternions representing
the same orientation are well separated and there are
no singularities in this representation. Our goal is to
find a sequence of positions and orientations (pk, qk)
that approximate measurements (1) well and at the same
time encode a smooth rigid body motion. Note that,
in this paper, we consider the problem of batch (offline)
processing, i.e., all of the data are available at the time of
estimation. This is different from online filtering, which
can only use past measurements to smooth the incoming
data. Online filters on SE(3) and SO(3) were considered,
e.g., in [8–12]. Methods that take into account the
properties of the special Euclidean group have also been
considered in the context of pose estimation in computer
vision [13–16] and in control [17].

The problem of smoothing on general Riemannian
manifolds has been considered in general mathematical
texts [18–20]. The approach proposed in this paper is
a special case of smoothing on Riemannian manifolds.
Unlike these more general papers, in this paper we
focus on a specific problem of smoothing in R3 × S3 and
address many particular issues relevant to this problem,
e.g., the definition of tangential space and metrics using
an exponential and logarithmic map and how to use
them within the framework of the Gauss-Newton and
Levenberg-Marquardt methods on R3 × S3.

As mentioned above, SO(3) cannot be globally embedded
in the 3D Euclidean space. This means that if the rotation
group is represented by three real parameters (e.g., as in
the case of Euler angles), the Euclidean metric topology in
R3 does not induce a global topology or metric structure
in SO(3). This is the main motivation for selecting unit
quaternions to represent rotations - the spherical metric
of S3 corresponds to the angular metric of SO(3) [21].
We would, however, obtain similar results if we used a
different representation free of singularities, e.g., rotation
matrices. In the following, we first formulate the problem
of estimating motion trajectories on R3 × S3 and then
propose an optimization method that can be applied to

Figure 1. Demonstration of a peg-in-hole operation. The human
demonstrator observes the performance of the robot and adapts
his hand motion so that the robot successfully executes the task.
The demonstrator’s hand motion is measured by Kinect.

solve it. The main feature of our approach is that we
exploit the properties of the exponential map to calculate
new estimates at each step of the iterative optimization
process, which enables us to formulate the optimization
process directly on R3 × S3.

2. Preliminaries

Formally, a quaternion q = (w, u1, u2, u3) is a vector
quantity, where w is the scalar component of q and u =
[u1, u2, u3]

T is the vector component. The quaternion
multiplication is defined by:

q ∗ q′ = (ww′ − uTu′, wu′ + w′u + u × u′). (2)

Quaternions form a non-commutative group with respect
to the above multiplication. The magnitude of a
quaternion is defined as:

|q| =
√

q ∗ q =
√

w2 + uTu, (3)

q = (w,−u), (4)
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where q is the conjugate of q. Given a rotation by ϑ
about a unit axis vector n, we define the associated unit
quaternion as:

q(ϑ, n) =
(

cos
(

ϑ

2

)
, sin

(
ϑ

2

)
n
)

. (5)

There is a 2-1 mapping between unit quaternions and the
rotation group [21]. Each rotation from SO(3) can thus
be represented by two quaternions belonging to the unit
sphere S3 ⊂ R4. However, the two unit quaternions
representing the same rotation are well separated because
they lie on different sides of the unit sphere. It can be
shown that a vector v′ ∈ R3, rotated from a vector v ∈ R3

by a rotation represented by a unit quaternion q, can be
calculated by a simple quaternion multiplication:

v′ = q ∗ v ∗ q. (6)

In this multiplication, the 3D vector v is treated as a
quaternion with a zero scalar component. It is easy to
see that the resulting quaternion v′ has a zero scalar
component as well.

In the following, we will need the exponential map exp :
R3 → S3, which is given by:

exp(r) =




(
cos(‖r‖), sin(‖r‖) r

‖r‖

)
, ‖r‖ �= 0

(1, 0, 0, 0), r = 0

. (7)

We denote by Tq(S3) ⊂ R4 the tangent space of S3 at
unit quaternion q. It can be shown that the exponential
map transforms a tangent vector r ∈ T1(S3) ≡ R3 into
q ∈ S3, where q is a quaternion at distance ‖r‖ from the
identity quaternion 1 (a unit quaternion with a zero vector
component) along the geodesic curve, which is given by
q(t) = exp(t log(q)), starting from quaternion 1 in the
direction of r. The geodesic curve represents the shortest
path from 1 to q on S3. The logarithmic map log : S3 → R3

is defined as:

log(q) = log(w, u) =





arccos(w)
u

‖u‖ , u �= 0

(0, 0, 0), q = (1, 0, 0, 0)
. (8)

If we limit the domain of the exponential map to ‖r‖ < π
and the domain of the logarithmic map to S3/(−1, 0, 0, 0),
then both mappings become one-to-one, continuously
differentiable and inverse to each other. It can be shown
that the expression:

d(q1, q2) =

{
2‖ log(q1 ∗ q2)‖, q1 ∗ q2 �= (−1, 0, 0, 0)

2π, otherwise
(9)

is a metric on S3. This metric is usually called the ’angular
metric’ of S3.

3. Formulation of the Problem

The estimation of noisy vector-valued measurements with
non-diagonal covariance matrices has been considered by
[22, 23], who developed an iterative algorithm for the
nonlinear estimation of a smooth vector-valued function
based on a non-parametric optimality criterion. In our
case, the problem is more complicated because the space
of all orientations is not a vector space. While the

difference between the measured and the true position can
be modelled as additive, namely:

pk = p′
k + ep

k , (10)

this is not the case for the difference between the measured
orientation qk and the true orientation q′k. This error can be
modelled as [8]:

qk = exp(eq
k) ∗ q′k, (11)

where eq
k ∈ R3 is an error vector.

We assume that the error in the position and orientation is
Gaussian with zero mean and a covariance matrix Σk. The
changing of the current position p′

k and orientation q′k by a
deterministic displacement (∆pk, ∆qk) results in:

(p′′
k , q′′k ) = (p′

k + ∆pk, ∆qk ∗ q′k). (12)

We note that the position error vector remains unchanged
under transformation (12). To find the relationship
between the old and the transformed rotation error vector,
we make the following observation:

qnew
k = ∆qk ∗ qk = ∆qk ∗ exp(eq

k) ∗ q′k
= ∆qk ∗ exp(eq

k) ∗ ∆qk ∗ ∆qk ∗ q′k

= exp
(

∆qk ∗ eq
k ∗ ∆qk

)
∗ q′′k . (13)

Hence, there exists the following relationship between the
two error vectors:

eq new
k = ∆qk ∗ eq

k ∗ ∆qk = R(∆qk)e
q
k , (14)

where the rotation matrix R is given by the formula:

R(q) = R(w, u) =




w2 + u2
1 − u2

2 − u2
3

2(u1u2 + wu3)
2(u1u3 − wu2)

2(u1u2 − wu3) 2(u1u3 + wu2)
w2 − u2

1 + u2
2 − u2

3 2(u2u3 − wu1)
2(u2u3 + wu1) w2 − u2

1 − u2
2 + u2

3


 .

The new error vector is obtained by rotating the old error
vector into a new orientation. Writing the covariance
matrix Σk as:

Σk =

[
Σ

p
k Σ

pq
k

Σ
pq
k Σ

q
k

]
, (15)

the covariance matrix describing the uncertainties in the
new pose can be calculated by:

Σnew
k =

[
Σ

p
k Σ

pq
k R(∆qk)

T

R(∆qk)(Σ
pq
k )T R(∆qk)Σ

q
k R(∆qk)

T

]
. (16)

The aim of reconstruction is to find a trajectory that
not only approximates the measurements well but
is also smooth. If the measurements were simply
interpolated, the reconstructed trajectory would not be
smooth enough. Hence, we must search for a compromise
between smoothness and goodness of fit. Writing p =[

pT
1 , . . . , pT

n
]T and q =

[
qT

1 , . . . , qT
n
]T , the goodness of fit

can be evaluated by:

F0(p, q) =

∑n
k=1

[
pk − p∗

k
log(qk ∗ q∗k )

]T

Σ−1
k

[
pk − p∗

k
log(qk ∗ q∗k )

]
,

(17)
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where (p∗
k , q∗k ), k = 1, . . . , n, are the measured poses

and Σk are the positive definite covariance matrices with
respect to the zero mean error vector [ep T

k , eq T
k ]T defined

in (10) and (11). It is easy to show that each of the summed
terms in (17) is a metric on R3 × S3 if Σk are positive
definite matrices.

A good measure of the smoothness of trajectories is given
by the amount of linear and angular acceleration. The
linear acceleration ak, k = 2, . . . , n − 1, can be estimated
by:

vk(p) =
pk+1 − pk

∆tk
,

ak(p) =
vk(p)− vk−1(p)

∆tk−1

=
pk+1 − pk
∆tk−1∆tk

−
pk − pk−1

∆tk−1∆tk−1
,

where ∆tk = tk+1 − tk. Similarly, the angular acceleration
αk, k = 2, . . . , n − 1, can be estimated by:

ωk(q) =
2

∆tk
log(qk+1 ∗ qk)

αk(q) =
ωk(q)− ωk−1(q)

∆tk−1

=
2 log(qk+1 ∗ qk)

∆tk−1∆tk
−

2 log(qk ∗ qk−1)

∆tk−1∆tk−1

Writing:

g1(p) =
n−1

∑
k=2

‖ak(p)‖2, (18)

g2(q) =
n−1

∑
k=2

‖αk(q)‖2, (19)

we can formulate the following criterion, which should
be minimized by a rigid body motion that exhibits good
balance between smoothness and goodness of fit:

F(p, q) =
1
2
(F0(p, q) + λ1g1(p) + λ2g2(q)). (20)

The parameters λ1 and λ2 govern the trade-off between
the two criteria.

Since the criterion function (20) is nonlinear, we must
apply nonlinear optimization techniques to find the
optimal sequence of poses (pk, qk). The minimization of
(20) over pk, qk would be a classic nonlinear least squares
optimization problem if we could treat unit quaternions
qk as elements of R4 and not of S3. Since this is not the
case, the classic approach would be to add the constraints
|qk| = 1 to the optimization criterion. However, such
constraints make the optimization problem significantly
harder. In the following, we propose a technique that can
be used to optimize the criterion (20) without specifying
additional constraints.

4. Optimization in R3 × S3 × . . . × R3 × S3

The tangent space Tq(S3) ⊂ R4 is defined as a space
that contains the directions of all paths on S3 passing

through the quaternion q. As mentioned in Section 2,
the exponential map exp transforms a tangent vector r ∈
T1(S3) ≡ R3 into a point q̃ ∈ S3 that lies on the geodesic
curve corresponding to the tangent vector r. It turns
out that for any q ∈ S3, the exponential map expq that

transforms each tangent vector x ∈ Tq(S3) into a point q̃
that lies on S3 along the geodesic curve starting at q in the
direction of x at the distance ‖x‖ is given by:

expq(x) = exp(x ∗ q) ∗ q. (21)

It can be shown [24] that x ∗ q ∈ T1(S3) or - in other words
- x ∗ q is a quaternion with a zero scalar component, for
any x ∈ Tq(S3), q ∈ S3. Thus, the above mapping is
well-defined for all x ∈ Tq(S3). As the mapping x ∗ q is an
isomorphism from Tq(S3) to R3, all the unit quaternions
in the neighbourhood of q can be represented by exp(r) ∗
q, r ∈ R3.

Taking (pi
k, qi

k) ∈ R3 × S3, k = 1, . . . n, to be
the i-th estimate for the optimal sequence of positions
and orientations, it is appropriate to calculate the next
sequence of positions and orientations as follows:

pi+1
k = pi

k + di
k, (22)

qi+1
k = exp(ri

k) ∗ qi
k. (23)

where di =
[
di T

1 , . . . , di T
n

]T
and ri =

[
ri T

1 , . . . , ri T
n

]T

should be obtained by approximating the minimum of the
objective function:

Fi(d, r) =
1
2

F(pi + d, exp(r) ∗ qi). (24)

where:

exp(r) ∗ qi =




exp(r1) ∗ qi
1

...
exp(rn) ∗ qi

n


 .

The above criterion can be rewritten as:

Fi(d, r) =
1
2

f i(d, r)T f i(d, r), (25)

where:

f i(d, r) =




Σ−1/2
1

[
d1 + pi

1 − p∗
1

log(exp(r1) ∗ qi
1 ∗ q∗1)

]

√
λ1 a2(d + pi)

√
λ2 α2(exp(r) ∗ qi)

Σ−1/2
2

[
d2 + pi

2 − p∗
2

log(exp(r2) ∗ qi
2 ∗ q∗2)

]

...
√

λ1 an−1(d + pi)
√

λ2 αn−1(exp(r) ∗ qi)

Σ−1/2
n−1

[
dn−1 + pi

n−1 − p∗
n−1

log(exp(rn−1) ∗ qi
n−1 ∗ q∗n−1)

]

Σ−1/2
n

[
dn + pi

n − p∗
n

log(exp(rn) ∗ qi
n ∗ q∗n)

]



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is a vector function from R6n to R12n−12. The gradient and
the Hessian of Fi are given by:

∇Fi(d, r) = Ji(d, r)T f i(d, r), (26)

∇2Fi(d, r) = Ji(d, r)T Ji(d, r) + (27)
n

∑
k=1

f k
i (d, r)∇2 f k

i (d, r),

where Ji(d, r) is the Jacobian of f i at (d, r) and f k
i are the

component functions of f i.

The Taylor series expansion for the vector function ∇Fi
around ∇Fi(0, 0) is given by:

∇Fi(d, r) ≈ ∇Fi(0, 0) +∇2Fi(0, 0)
[
dT , rT

]T
(28)

If we assume that the value of Fi is small for all q belonging
to the neighbourhood of the solution (i.e., f k

i (d, r) ≈ 0 for
all k), we obtain from Eq. (27) the following approximation
for the Hessian in the neighbourhood of the solution:

∇2Fi(0, 0) ≈ JT
i Ji, (29)

where Ji ∈ R(12n−12)×(6n) is the Jacobian of f i at d = r =
0. Using the Taylor series expansion (28) and the fact that
∇Fi(d, r) = 0 at the minimum of Fi, we can calculate the
appropriate modification (di, ri) as follows:

[
di

ri

]
= −(JT

i Ji)
−1 JT

i f i(0, 0), (30)

The next sequence of poses can then be calculated using
Eq. (22) and (23). The iteration is stopped when:

‖∇Fi(0, 0)‖ = ‖JT
i f i(0, 0)‖ < ε. (31)

Note that JT
i Ji ∈ R6n×6n is a symmetric band matrix

with bandwidth 35 (17+1+17). Thus, the number
of arithmetic operations needed to solve the resulting
linear system of equations is linear with respect to the
number of measurements. Note that this is by far
the most computationally expensive part of our system.
Since we have a good initial approximation for our
optimization problem (the measurements themselves are
used to initialize optimization), there are not too many
iterations that need to be performed in order to find
the optimal solution (see also Table 1). Hence, our
approach can easily deal with thousands of measurements,
which is the order of magnitude for the number
of data points we normally acquire when measuring
demonstrated trajectories. Demonstrated trajectories are
usually acquired at 30 Hz, and up to 120 Hz with
marker-based systems, and take from a few seconds to
tens of seconds. Note also that batch optimization is
by definition offline; hence, real-time operation is not an
issue.

The counterpart of the derived iteration in real spaces is
the Gauss-Newton iteration. Actually, we have shown
above how to carry out the Gauss-Newton iteration
on R3 × S3 × . . . × R3 × S3. However, the classic
Gauss-Newton method can encounter problems when the

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

0 5 10 15 20 25 30
Time

Trajectory: x
Measurements: x

20

25

30

35

0 5 10 15 20 25 30
Time

Trajectory: y
Measurements: y

20

25

30

35

40

0 5 10 15 20 25 30
Time

Trajectory: z
Measurements: z

Figure 2. The translational part (x, y and z components)
of the reconstructed trajectory (in centimetres) and a sample
of measurements. Not all measurements are shown for better
visualization.

second-order term in Eq. (27) is significant. While for small
smoothing parameters λ1, λ2 the criterion functions f k

i are
also small in the neighbourhood of the minimum, this is
not the case for larger smoothing parameters. Therefore,
we can expect slower convergence when the smoothing
parameter becomes large.

We can overcome this problem by applying the
Levenberg-Marquardt method, in which the search direction
is calculated as follows:

[
di

ri

]
= −(JT

i Ji + µi I)
−1 JT

i f i(0, 0). (32)
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Figure 3. The orientational part (x, y and z components of u(t),
q(t) = (w(t), u(t))) of the reconstructed trajectory and a sample
of measurements. Not all measurements are shown for better
visualization.

Note that the system matrix (JT
i Ji + µi I) is positive

definite for every µi > 0. When µi is equal to zero,
the search direction becomes identical to that of the
Gauss-Newton method. As µi tends towards infinity,
(di, ri) tends towards a vector of zeros and a steepest
descent direction. This implies that, for some sufficiently
large µi, the value Fi(d

i, ri) is smaller than Fi(0, 0) =
F(pi, qi). Thus, the Levenberg-Marquardt method uses a
search direction that is a cross between the Gauss-Newton
direction and the steepest descent.

It remains to show how to determine the smoothing
parameters λ1 and λ2. It is important to properly select
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0 5 10 15 20 25 30
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Figure 4. The orientational part (w component of q(t) =
(w(t), u(t))) of the reconstructed trajectory and a sample of
measurements. Not all measurements are shown for better
visualization.

the degree of smoothing to find a proper balance between
smoothness and goodness of fit. Often, methods like
cross-validation are used, but in general cross-validation
is computationally expensive because it requires that the
data be partitioned into two sets: one used to learn or train
a model, and the other used to validate the model. These
sets need to be changed many times so that all the data can
be validated. For this reason, we prefer to use an approach
proposed in [25] for the case when the amount of noise
associated with the data is known. With this method, we
can determine the optimal values for λ1 and λ2 by solving
the following nonlinear systems of equations:

n

∑
k=1

(pk(λ1)− p∗
k )

T(Σ
p
k )

−1
(pk(λ1)− p∗

k ) = S1, (33)

n

∑
k=1

log(qk(λ2) ∗ q∗k )
T(Σ

q
k)

−1
log(qk(λ2) ∗ q∗k ) = S2. (34)

Unlike in (20), where the calculation of {pk, qk} is coupled
through the covariance matrices, here, the smoothed
positions and orientations {pk(λ1), qk(λ2)} are calculated
in a decoupled way by solving:

1
2

n

∑
k=1

(pk − p∗
k )

T(Σ
p
k )

−1
(pk − p∗

k ) + λ1g1(p), (35)

1
2

n

∑
k=1

log(qk ∗ q∗k )
T(Σ

q
k)

−1
log(qk ∗ q∗k ) + λ2g2(q). (36)

Assuming that Σ
p
k and Σ

q
k are the covariance matrices of

the measurements, the acceptable values for S1 and S2 are
within the range N −

√
2N ≤ S1, S2 ≤ N +

√
2N, N =

n + 1. This approach requires that we solve two additional
nonlinear zero finding problems (33) and (34), but these
are single variable, scalar, nonlinear equations, and can
therefore easily be solved with standard solvers for scalar
functions, such as, e.g., fzero available in MATLAB.
Every time we need to compute the value of (33) or
(34), we must first solve the decoupled systems (35) and
(36) to obtain pk(λ1) and qk(λ2), which are needed for
the calculation of (33) and (34) at the given λ1 and λ2,
respectively. While the problems of determining λ1 and λ2
are not totally independent of each other, the approach of
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λ1 = λ2 = 1 λ1 = λ2 = 105

F(pi , qi) ‖∇Fi(0, 0)‖ F(pi , qi) ‖∇Fi(0, 0)‖

1.8854645e+04 7.6323626e+03 1.8799571e+09 7.6100687e+08

1.4852889e+03 2.1105371e+01 5.2411567e+05 1.4645490e+07

1.4852889e+03 1.2726109e-04 3.4902288e+05 7.6035127e+04

1.4852889e+03 2.2911019e-06 3.4901791e+05 8.8733884e+01

1.4852889e+03 1.1957504e-07 3.4901790e+05 2.3231791e+00

1.4852889e+03 1.8406582e-09 3.4901790e+05 2.7915866e-01

1.4852889e+03 3.6851655e-10 3.4901790e+05 1.6016155e-02

3.4901790e+05 2.1152017e-03

3.4901790e+05 1.2825353e-04

3.4901790e+05 1.7447888e-05

3.4901790e+05 4.6314701e-06

Table 1. Convergence of the Gauss-Newton method for different
smoothing parameters

decoupling the calculation of both smoothing parameters
worked well in practice.

The described method finds a smooth sequence of hand
postures that approximate the measurements well. To
generate a continuous motion trajectory that can be used
for robot control, one must interpolate the smoothed
postures. While standard techniques for interpolation
in Rn [26] can be utilized for the interpolation of
position vectors, more specialized methods are needed
for smooth interpolation on SO(3). The most commonly
used quaternion interpolation method is spherical linear
interpolation (Slerp), proposed by [21], but more advanced
methods that can ensure higher-order smoothness also
exist [27].

5. Experimental Results and Conclusions

We applied the developed method for the reconstruction
of 15 real hand motions. In these experiments, the
Gauss-Newton method always converged. As expected,
the convergence was slower for larger values of smoothing
parameters (see Tab. 1). The measured poses were
used as a starting point in iteration (30) or (32). One
example smoothed trajectory, which was calculated at the
optimal values of the smoothing parameters, is depicted in
Figures 2, 3 and 4. In this way, smoother trajectories were
estimated that resulted in less jerky robot movements.

To show the benefit of the proposed approach, which
considers full covariance matrices Σk and computes
positions and orientations simultaneously, we compared
it to scalar spline smoothing, where each component
is evaluated separately. Decoupled smoothing of
separate components of unit quaternions has an additional
disadvantage that the smoothed quaternions are not unit

MEp (mm) MEq (deg)

Proposed approach 1.04 1.39

Scalar spline smoothing 1.81 2.07

Table 2. Comparison of smoothing with the proposed approach
and with scalar spline smoothing, where each position and
quaternion dimension is smoothed separately.

quaternions. They should, therefore, be normalized after
smoothing, which introduces additional errors. Note that
scalar spline smoothing also requires the determination
of an optimal smoothing parameter λ. The comparison
was done in a simulation experiment where the correct
position p(t) ∈ R3 and orientation trajectories q(t) ∈ S3

were known. To the simulated trajectories, we added
Gaussian noise using preselected covariance matrices Σk.
The quality of approximation was evaluated using the
mean error, namely:

MEp =
1
n

n

∑
k=1

‖pk − p(tk)‖, (37)

MEq =
1
n

n

∑
k=1

d(qk, q(tk)), (38)

where d is the metric on S3 defined in Eq. (9). Results
for a typical trajectory are shown in Tab. 2. Significant
improvement could be achieved both in position and the
orientation trajectory.

In summary, in this paper we developed two
trajectory estimation methods on R3 × S3 - one
based on Gauss-Newton iteration and the other on
Levenberg-Marquardt iteration. We have also shown
how to treat the measurement errors and suggested an
approach for the automatic calculation of smoothing
parameters. The method based on Gauss-Newton
iteration turned out to be sufficient in our experiments and
converged faster. However, it might become necessary
to apply the method based on Levenberg-Marquardt
iteration for the data containing more noise. With our
approach, we were able to reconstruct smooth trajectories
on R3 × S3 using real data obtained by measurement
systems with or without markers. In this way, we can
provide a high quality input for imitation learning
systems.
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