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Abstract

Image based object classification requires clean train-
ing data sets. Gathering such sets is usually done manually
by humans, which is time-consuming and laborious. On
the other hand, directly using images from search engines
creates very noisy data due to ambiguous noun-focused in-
dexing. However, in daily speech nouns and verbs are al-
ways coupled. We use this for the automatic generation
of clean data sets by the here-presented TRANSCLEAN al-
gorithm, which — through the use of multiple languages
— also solves the problem of polysemes (a single spelling
with multiple meanings). Thus, we use the implicit knowl-
edge contained in verbs, e.g. in an imperative such as “hit
the nail”, implicating a metal nail and not the fingernail.
One type of reference application where this method can
automatically operate is human-robot collaboration based
on discourse. A second is the generation of clean image
data sets, where tedious manual cleaning can be replaced
by the much simpler manual generation of a single relevant
verb-noun tuple. Here we show the impact of our improved
training sets for several widely used and state-of-the-art
classifiers including Multipath Hierarchical Matching Pur-
suit. All tested classifiers show a substantial boost of about
+20 % in recognition performance.

1. Introduction

Classifiers are ubiquitous in modern vision applica-

tions, spanning various areas including autonomous ve-

hicles, photo classification on image hosting websites or

robotic systems in unstructured environments. As such,

there has been a significant effort to improve classification

pipelines, using more discriminative image features (e.g.

SIFT [21]) and image signatures (e.g., Bag of Words [8],

Fisher Vectors [25]) or by using better machine learning

algorithms (e.g., Support-Vector-Machines). Additionally,

new approaches like Deep Belief Networks [16] and sparse

coding [6] have improved recognition performance in recent

years.

Nevertheless, all of these approaches have one thing in

common: They are supervised methods which heavily de-

pend on the quality and size of the training set used. Com-

piling such a dataset typically involves humans in time con-

suming and tedious procedures [23, 26, 28]. To avoid this,

some researchers use the highest ranking images returned

by image search engines (e.g., Google) using the class name

as a search term [10, 11]. Unfortunately, Griffin et al.
[12] discovered that only 33 % of the top-100 images from

Google are relevant, when using the class name as a search

term. This makes it unfeasible for collecting large datasets.

One reason for such a low relevance are polysemes (a sin-

gle spelling with multiple meanings). “Nail”, for example

could refer to the piece of anatomy or the object one hits

with a hammer. Clearly, a command like “hit nail” provides

a context to instantly disambiguate the meaning of “nail”,

and while indexed images for “hit nail” will be more rele-

vant, they also contain a lot of clutter or irrelevant objects.

This is a consequence of actions like “tighten bolt” or “hit

nail” involving tools in addition to the actually searched for

“bolt” and “nail”. Figure 8 shows this problem on some ex-

amples for plain Google search without context (GP) and

for Google searches with action context (GC).

To address these issues, we have developed

TRANSCLEAN (TC), which uses verb-noun tuples

from sentences. As verb-noun tuples are part of all

sentences, it specifically provides a generic solution to

the problem of command-disambiguation. This arises in

human-robot-interaction applications such as [7, 9, 13, 17]

or applications which execute commands from instruction

sheets like [3, 19, 29]. On the other hand, TRANSCLEAN

can be also be used for improving the relevance of Google

Image Search results by manually providing context. While

we show results for noun-verb tuples, the algorithm will

work with descriptive adjective-noun combinations as well.

The algorithm accomplishes this by creating relevant

noun translations for the provided context using the avail-
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able Google services Google Translate, Google Text Search

and Google Image Search. We should emphasize at this

point that we could use other translation services (e.g.

dict.leo.org, dict.cc) or search engines which

index documents and images by word occurrences (e.g.

bing.com, yahoo.com).

2. Related work
TRANSCLEAN combines word sense disambiguation

with content-based image retrieval. Word sense disam-

biguation is the task aimed at discovering the meaning of

single- and multi-words in texts and mapping occurrences

to entries in a reference knowledge database [1, 22]. Im-

age retrieval is the task of retrieving query relevant images

from a database. This query can either be a phrase, or (as is

the case with content-based image retrieval) another image,

which requires computer-vision algorithms to be employed.

Multilinguality has been used in various ways, e.g. by using

parallel text corpora to build multilingual contexts [2, 15]

or by exploiting complementary sense evidence from trans-

lations in different languages [24]. While these approaches

stay in the text domain and require a semantic knowledge

base like BabelNet, we exploit multilinguality to eliminate

polysemy by applying image retrieval techniques to a super-

set of images created by multilingual searches. We should

note that we are not interested in the semantic meaning of

the classes, as is the goal in word sense disambiguation, but

rather in an unambiguous training set which can be fed into

existing classifier pipelines respecting the context given by

e.g. a verb. A related approach was proposed by Kulvicius

et al. [20], who used search cues generated from domain

specific text-corporas to create a superset of images which

are then merged into one relevant dataset. In contrast to

this we do not need to know the context explicitly or to cre-

ate a text-corpora beforehand. Instead, we deduce the con-

text implicitly from the verb. Other works also make use

of visual and textual cues. Either implicitly, by using the

first results of text-based image search engines [10, 11], by

constructing their own image search engine [5, 27], or ex-

plicitly, by making use of image tags and labels as found

in photo-sharing websites like Flickr [14]. None of these

methods can automatically cope with the problem of poly-

semes.

This paper is organized as follows: First, in Sec. 3 we

present the outline of our algorithm. Section 4 gives an

overview of the methods we used for performance evalu-

ation. In Sec. 5 we present quantitative results showing

the superiority of our method compared to plain Google

search without context (GP) as well as Google search to-

gether with the context (GC). Additionally, we give results

for an image classification experiment using several pop-

ular and state-of-the-art classifiers including the Multipath

Hierarchical Matching Pursuit (M-HMP) proposed by Bo et

al. [6]. Finally, we summarize and discuss our approach in

Sec. 6.

3. Proposed algorithm
The proposed algorithm, depicted in Fig. 1, consists of

five sequential parts which we describe in this Section:

3.1 Noun and verb translation, 3.2 Context check, 3.3 Im-

age retrieval, 3.4 Subset matching, and 3.5 Duplicate and

clutter removal. The input for the TRANSCLEAN algorithm

consists of an object/noun (like apple, orange or saw) and an

action context (like cut, fill or prick). For clarity, we adopt

the notation class (context) to denote a class in a given con-

text, e.g., nail (hit).

3.1. Noun and verb translation

In the first step we translate the noun and verb sepa-

rately into multiple languages (we use French, Spanish and

German unless noted otherwise). Having “cup (fill)” as in-

put, this step would retrieve all translations for cup and fill.

We will use https://translate.google.co.uk/
throughout this paper. For washer (clean) the translations in

French are: washer: rondella, machine à laver; clean: net-
toyer, éplucher, faire nettoyage, ratiboiser, ravaler, vider.

3.2. Context check

This step determines the most relevant noun-translation

for each language using Google Text Search https://
www.google.co.uk/. For each verb-noun combina-

tion we perform two exact searches: “noun verb” and “verb

noun”. For both searches we parse the number of results

and take the maximum as the relevance score for that com-

bination. The noun which gets the most matches combined

with any verb is then selected as the relevant translation. We

use the Google search parameter lr to only retrieve results

from documents in a specific language.

In the washer (clean) example shown in Fig. 2 the trans-

lations which get selected are machine à laver in French,

Waschmaschine in German and lavadora in Spanish.

3.3. Image retrieval

This step downloads the first 300 images for the

translations which passed the context check (one per

language) as well as for the English search. Again,

we set the parameter lr to the respective language.

For instance, to download images for “Waschmaschine”

we use https://www.google.co.uk/search?q=
Waschmaschine&tbm=isch&lr=lang_de.

3.4. Subset matching

In this step we are going to merge the different language

subsets into one relevant dataset. We do this by pair-wise

image comparison across the different subsets. To calcu-

late similarity between two images we generate a histogram
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Duplicate removal 

Class name + context 
Washer (clean) 

Subsearch results 
Washer (En) Waschmaschine (De) Lavadora (Es) Machine à laver (Fr) 

Subset matching 
Washer (En) Waschmaschine (De) Lavadora (Es) Machine à laver (Fr) 

Clutter removal 

Relevance scoring and sorting 

Subset Matches (S) = 3 

Translation & context check 
Washer = machine à laver, 
Waschmaschine, lavadora 

Total Matches (T) 
S = 0 

T 

Sobel 

S = 2 

Figure 1. Flow diagram of the TRANSCLEAN algorithm exemplified on the class “washer” in the context of “clean”. Subset Matches (S)

counts the total number of subsets in which a match has been found. Total Matches (T ) counts the total number of matches. S is our first

order and T our second order relevance sorting criteria. Only images with S > 0 are considered further. We used ISO639-1 language

codes.

nettoyer éplucher faire 
nettoyage ratiboiser ravaler vider 

rondella 0 0 0 0 0 0 
machine à laver 30400 5 0 0 1 313 

reinigen säubern waschen sauber 
machen abwischen 

Waschmaschine 39400 1430 126000 827 194 
Scheibe 5390 2380 2530 7300 1200 
Geschirrspülmaschine 3940 646 2270 7 8 

French 

German 

limpiar asear mondar hacer una  
limpieza 

lavadora 2140 2 0 0 
arandela 185 5 0 0 

Spanish 

Figure 2. Context check for washer (clean). Rows: Translations

for the noun; columns: Translations for the verb. Each cell shows

the number of exact Google search results (relevance score) for the

noun-verb combination. The noun with the highest response gets

selected (marked with red).

for each image using SIFT features [21]. Since we reduce

color images to gray-scale for the SIFT features, we are able

to compare color to gray-scale images as well. The features

are sampled on a 14 × 14 grid on the full image using four

scales. Bag-of-words [8] with N = 100 clusters is used to

generate normalized image signatures. The histogram inter-

section (min-kernel) over all bins is used as a match score.

We require the score M to exceed a empirically determined

threshold θth = 70% to count as a match:

M(x, y) =
N∑

i

min(xi, yi) ≥ θth. (1)

A procedure similar to that of Kulvicius et al. [20] is

used to generate an overall image relevance score, improv-

ing upon their work by using an additional relevance score.

Fig. 1 shows how each image is scored: The score consists

of 1) the number of other subsets where at least one match

has been found S and 2) the total number of matches T . Im-

ages without subset matches S = 0 are pruned. Relevance

of images is determined first by S and second by T .

Given a fixed number of SIFT features per image and

for the vocabulary generation, the complexity of the his-

togram generation algorithm is linear in the number of im-

ages O(kn) with k being the number of languages consid-

ered and n denoting the number of images per set. The

complexity of the matching is O(k2n2). While the match-

ing scales much worse, it is the fastest part of the algorithm

when using four languages and 300 images per language,

as it only consists of simple min operations. For n = 300
and k = 4 the running time of the image-to-image match-

ing without parallelization is about 13 seconds on a 3.2 GHz

processor.
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Object Given Context Meanings
apple cut food, brand

axe chop tool, brand

bolt tighten hardware, athlete, movie

cup fill drinking, trophy, bra

fork prick cutlery, bike-part

glass fill drinking, material

hammer hit tool, brand

nail hit hardware, finger

nut tighten hardware, food

oil eat food, mineral-oil

orange cut food, color

pan fry kitchenware, movie, god

peach fry food, computer character

pot cook kitchenware, drug

saw cut tool, movie

Table 1. All classes together with their given context used for the

experiments. Possible meanings as well as the relevant meaning

(marked in bold) are shown.

3.5. Duplicate and clutter removal

Finally, in order to clean the result set of duplicate im-

ages and images with cluttered scenes we perform a dupli-

cate and clutter search. To do this, we scale all images to

exactly 150×150 pixels ignoring the aspect ratio and gener-

ate gradient magnitude images gi using the sobel filter (the

values gi are in the range of 0 to 1). The similarity be-

tween image i and image j is calculated by L1-normalizing

the gradient images gi and gj and calculating the histogram

intersection. The duplicate threshold was empirically deter-

mined and set to 0.85 throughout all experiments. When a

duplicate is found the image with lower relevance score is

deleted. Additionally, we remove cluttered images by cal-

culating the mean gradient magnitude within a five pixel im-

age border of gi. This value ranges between 0 (no clutter)

and 1 (heavy clutter). Using a clutter threshold of 0.1 effec-

tively removed all images which were recorded in cluttered

scenes and therefore considered bad for the training (e.g.,

an apple on a tree in a garden).

4. Evaluation methods

For the evaluation of our algorithm we benchmarked on

the classes shown in Table 1. In all cases the noun itself is

ambiguous and could refer to multiple meanings. In addi-

tion, we also provide context, in the form of verbs, which

can be used for disambiguation. We used four languages:

English, German, Spanish and French. Additionally, we

used Portuguese for orange as the word is the same in Ger-

man, French and English. We evaluate the proposed al-

gorithm (TC) against plain Google search (GP) as well as

Google search including the context (GC). For GP we con-

Figure 3. Three images showing the quality grading as introduced

by [10] for three classes.

duct searches using the noun without the provided context

to retrieve images. For GC we also provide the context to-

gether with the class label for the search. For example, with

“pan” in the context of “fry”, we retrieve images for pan
(GP) as well as fry pan (GC). Image searches for GC are

always conducted without quotes.

4.1. Quality of retrieved training-sets

Both our algorithm and Google provide results in an or-

dered list. We therefore first investigate how image-quality

changes depending on list length. This is important as larger

training image datasets should generally improve classifier

performance. However, using more images may negatively

affect the overall relevance of the set if more non-relevant

images are added as the set expands, unnecessarily increas-

ing intra-class variance. To quantify this effect we let a hu-

man grade each image retrieved by GP, GC and TC. We

followed the categorization scheme introduced in [10]:

Good image Image containing the relevant object without

major occlusions although there may be a variety of

viewpoints, scalings and orientations.

Intermediate image Shows the relevant object, but may

contain extensive occlusion, substantial image noise or

the object is insignificant in the image.

Junk image Not relevant.

Stereotypic images for the three quality levels can be seen in

Fig. 3. We use precision as well as quality distribution to as-

sess the quality of the retrieved image sets. Precision is cal-

culated counting only Good images as positives. Here we

are especially interested in how precision changes depend-

ing on the number of images considered. This resembles the

measure introduced by [12] in the Caltech-256 benchmark

generation. The quality distribution, on the other hand,

measures the ratio of the three quality categories, allowing

deeper analysis of the properties of the methods.
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4.2. Image Classification

To assess the performance dependency of classifiers on

the training set we used three state-of-the-art object classi-

fication pipelines: Multipath Hierarchical Matching Pursuit

(M-HMP)[6], the SIFT and Bag-of-Words based approach

of Iravani et al. [18] combined with a Support-Vector-

Machine (SIFT SVM) and AdaBoost.MH (SIFT BOOST).

We decided on SIFT and Bag-of-Words as it has been and

still is a very popular classification pipeline in the scien-

tific community. Similar to the work of [18], SIFT features

were extracted on a dense grid and 300 cluster centers were

used to generate the signatures. We tested different kernels

(χ2, RBF and Histogram-Intersection) for the C-Support-

Vector-Machine and found similar performance changes in

all of them when trained with the 5 sets. For AdaBoost we

used the multiclass capable Adaboost.MH from the Multi-

Boost library [4]. M-HMP achieved state-of-the-art results

in many standard benchmarks by combining a collection of

hierarchical sparse features to capture discriminative struc-

tures in the images1. For testing we use a manually cleaned

image set containing only Good quality images which are

disjoint from the sets used in the training.

5. Evaluation
5.1. Context check

We conducted the context check with the contexts given

in Table 1. Additionally, we investigated more closely how

stable the translations of “nail” and “nut” are against chang-

ing contexts.

For “nail” we chose four contexts: hit, pin, paint and

cut. For the first two we expect our algorithm to retrieve

hardware-nail images and for the last two fingernail images.

Figure 4 shows the context check scores we retrieved from

Google Text Search using the French translations provided

by the Google translation service. All actions can be used

to correctly disambiguate the meaning of “nail”.

“Nut” shows an interesting case when using the context

“eat” (see Fig. 5). We expected the algorithm to select

only the food-nuts. Unluckily one translation in German

for “nut” is “Mutter”, which means hardware nut, but also

mother. Since mothers do also eat (and there is a lot written

about this in the documents indexed by Google) the context

check found this to be the relevant translation for the Ger-

man subset. The same polyseme, however, does not exist in

French, Spanish or Portuguese. Therefore the overall per-

formance of the algorithm is stable as long as one or more

unaffected languages are used.

Table 2 shows all the translations of the 15 classes used

in the following sections.

1We used the publicly available code http://homes.cs.
washington.edu/˜lfb/software/hmp/index.htm dis-

tributed by the authors.

coupe reduction coupure entaille 

9170 53 486 26 
149000 419 166 71 

peindre couvrir de 
peinture decrire faire de la 

peinture 

127 0 5 5 
2870 0 2 2 

frapper rencontrer toucher porter 
6650 31 45 3560 
288 9 386 146 

epingler goupiller clouer cheviller 
3 0 9380 0 
6 0 1830 0 

Cut Paint 

Hit Pin 

Clou 
Ongle 

Clou 
Ongle 

Figure 4. Context check for the class “nail” in different contexts.

Shown are the number of matches from Google Text Search for the

French set. Top rows correspond to responses for the hardware-

nail (clou) and bottom rows refer to the fingernail (ongle). Using

the noun which gets the most matches (highlighted in red) the al-

gorithm manages to retrieve the fingernail in the context of “cut”

and “paint”, whereas the contexts “hit” and “pin” lead to the hard-

ware nail being selected.

64% 

22% 12% 8% 6% 

9% 

4% 
0% 2% 0% 

27% 

75% 88% 90% 94% 

En+De En+De+Fr En+De+Fr 
+Es 

En+De+Fr  
+Es+Pt 

Good images Intermediate images Junk images 

En+Fr  
+Es 

Figure 5. Quality distribution using the first 80 images of the TC
generated sets for “nut (eat)” considering different languages de-

picted by their ISO639-1 language codes. Although the context

check decided for the wrong translation in German, the algorithm

only fails if no additional languages are used (En+De).

Class Context Translations
apple cut manzana, pomme, apfel

axe chop hacha, hache, axt

bolt tighten tornillo, boulon, schraube

cup fill taza, tasse

fork prick tenedor, fourchette, gabel

glass fill vaso, verre, glas

hammer hit martillo, marteau

nail hit clavo, clou, nagel

nut tighten tuerca, ecrou, mutter

oil eat aceite, huile, oel

orange cut laranja, naranja

pan fry sarten, poele, pfanne

peach fry molocoton, peche, pfirsich

pot cook cacerola, casserole, topf

saw cut sierra, scie, saege

Table 2. The final translations retrieved by the context check.
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Figure 6. Average precision of the retrieved images (counting only

Good) depending on the number of images considered. TC signif-

icantly outperforms the other methods. We included the Caltech-

256 dataset curve [12] (dashed line, which closely resembles our

results for Google-Plain) showing that our selected classes are rep-

resentative of typical data.

5.2. Quality measure

Figure 6 quantifies how precision of the sets changes de-

pending on the number of images considered. On average,

our algorithm improves Google results significantly, dou-

bling the precision to about 80 % (in contrast to 41 %) for

the first 80 images. While the average precision of our al-

gorithm stays constant, GP drops by 10 % and GC even by

15 % when increasing the list length from 15 to 80. Re-

markably, the averaged curve for Google-Plain resembles

the curve found when creating the Caltech-256 dataset [12].

This confirms our notion that the 15 classes selected as a

demonstration are representative of typical performance of

unfiltered Google Image Searches.

Interestingly, for some classes like “hammer”, plain

Google Search without context outperforms Google Search

with context. The reason for this is that using the context

in a Google Search often retrieves images which are more

related to the action than to the object itself. That is, while

these images show the relevant object they often have a lot

of clutter or the object is not visible at all (they will conse-

quently be rated as Intermediate or Junk) as shown in Fig.

7. Searches for nouns without the context verb show a small

fraction of Intermediate results, since images show either

the correct object or not. Examples of results from the three

methods can be seen in Fig. 8.

Our method retrieves on average 80 % Good images

compared to 41 % returned by Google. Even the worst

class “oil” shows 50 % Good images, which is 9 % bet-

ter than the average quality of the Google searches. We

shall show in the next section how much classifier perfor-

mance can be boosted using training images returned by our

TRANSCLEAN algorithm.

5.3. Image classification

As a demonstration of the effectiveness of

TRANSCLEAN, we conducted an experiment to show
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Figure 7. Quality distribution for all classes in the contexts given

in Table 1. We evaluated the 80 highest ranking images using the

measures introduced by [10] (see Sec. 4.1). Full bars correspond

to a 100 %.

Figure 8. The top 10 images retrieved by Google Image Search

(GP), Google Image Search with context (GC) and proposed

TRANSCLEAN algorithm (TC).

the effect of different training sets on classifiers. We

demonstrate that classifiers (see Sec. 4.2) are heavily

dependent on the quality of the training sets and that our

approach boosts them, resulting in better performance. To

show this, we created five training sets: One training set

generated by our algorithm (TC) and four sets consisting

of plain Google search as well as context Google search

results using the first 30 or 300 images (GP30, GP300,
GC30, GC300).

As can be deduced from Figure 9, the state-of-the-art

classifier M-HMP is far superior to the classifiers based

on SIFT and Bag-of-Words showing about 20 % better ac-

curacy for the same training set. The M-HMP classifier

achieved 61 % accuracy when using Google search images
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0 10 20 30 40 50 60 70 80 90 100

SIFT_BOOST

SIFT_SVM

M-HMP

GP30 GP300 GC30 GC300 TC
Figure 9. Performance impact of the training-sets on different clas-

sifier pipelines. All classifiers improve by roughly 20 % in accu-

racy using the TC set.

for only the noun (GP), 49 % when committing searches to-

gether with the verb (GC) and 80 % using images retrieved

by our proposed method. Both Support-Vector-Machines

and AdaBoost show poor performance across the Google

search datasets. Nevertheless, using the TRANSCLEAN

generated training sets improves performance across all

classifiers by 20 %.

Figure 10 shows the per class recall and mean classifica-

tion accuracy for the M-HMP. Remarkably, using the con-

text for the search in general yields worse results than using

the plain word for the search. The reason for this is the

high percentage of Intermediate quality images in the GC
sets (see Fig. 7). These images not only show the desired

object in a bad way but typically also show other objects

related to the action. This is far more destructive than Junk
images, as the decision boundaries for one class may spread

into the area of another class, e.g., a hammer may be classi-

fied as a nail since it was shown in many nail (hit) images.

Our method, in contrast, provides a high fraction of Good
images and a low fraction of Intermediate images. This is

clearly visible in the 19 % accuracy boost compared to the

second best performance achieved (using GP300).

6. Conclusion
In this paper we presented an approach for unsuper-

vised generation of training-sets for image classification al-

gorithms. We proved using several experiments that the

method outputs not only high quality sets of images when

providing the class name and an action context but can also

cope with polysemous classes. We also showed that while

Google Image Search disambiguates quite well when pro-

vided the action context (GC), it suffers from a high frac-

tion of images showing the object in a cluttered scene (In-
termediate images). GP on the other hand shows a high

fraction of images unrelated to the desired meaning. This

is in agreement with the results reported by Griffin et al.
[12]. Remarkably, Intermediate images are often far more

destructive for a classifier’s performance than Junk images,

as wrong objects shown consistently with the right object

may be learned instead. Our approach, however, yields few

Intermediate images (2 %) and a high fraction of Good im-

ages (80 %).

0 10 20 30 40 50 60 70 80 90 100

Apple (cut)

Axe (chop)

Bolt (tighten)

Cup (fill)

Fork (prick)

Glass (fill)

Hammer (hit)

Nail (hit)

Nut (tighten)

Oil (eat)

Orange (cut)

Pan (fry)

Peach (fry)

Pot (cook)

Saw (cut)

GP30 GP300 GC30 GC300 TC

Accuracy 

Figure 10. Per class recall and accuracy in percent of the M-HMP

classifier using different training sets.

For this paper we provided manually entered search

terms (which is one of the reference applications), but this

algorithm can be adapted to extract needed noun+verb (or

noun+adjective) tuples from autonomous and/or interactive

robotic systems, since a context is usually available as part

of a spoken or written command. Since we combine multi-

ple languages the algorithm is robust against incorrect trans-

lations or context check failure in single languages as shown

in Fig. 5. Using very class-specific actions will result in

better context check and therefore algorithm performance.

Conversely, one potential pitfall is that very general actions

like “put”, “take” and “place” may not show an improve-

ment due to their context being applicable to many objects.

This is a general problem however, as even humans are un-

able to disambiguate a class based on very general context.

Due to the importance of image classifiers for many

modern applications and their need for large, high quality

training sets we hope that this method will be useful for re-

searchers in various fields.
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