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Abstract— When looking at an object humans can quickly
and efficiently assess which actions are possible given the scene
context. This task remains hard for machines. Here we focus on
manipulation actions and in the first part of this study define
an object-action linked ontology for such context dependent
affordance analysis. We break down every action into three
hierarchical pre-condition layers starting on top with abstract
object relations (which need to be fulfilled) and in three steps
arriving at the movement primitives required to execute the
action. This ontology will then, in the second part of this work,
be linked to actual scenes. First the system looks at the scene
and for any selected object suggests some actions. One will be
chosen and, we use now a simple geometrical reasoning scheme
by which this action’s movement primitives will be filled with
the specific parameter values, which are then executed by the
robot. The viability of this approach will be demonstrated by
analysing several scenes and a large number of manipulations.

I. INTRODUCTION

From every day life we know that different scenes suggest
different actions, e.g. a board, a tomato, and a knife suggests
a “cutting the tomato” action. However, assessing whether or
not a robot could actually do this, whether it should/could
do rather something else or whether not much can be done
at all given such scenes remains a difficult problem. It
amounts to estimating the affordance of certain actions give
the context provided by the scene. One approach to solving
this problem is to analyse a scene and derive from it a
symbolic representation, which can then be used to find
possible actions and/or to do planning.

To achieve this, in Rosman and Ramamoorthy [1] a com-
plex network of geometrical relations in the spatial and tem-
poral domains is used. Via Support-Vector-Machines (SVMs)
topological features and symbolic meanings are learned. In
Sjoo and Jensfelt [2] patterns of functional relationships
are defined, e.g. the object “work surface” with the action
“manipulate”. Similar, in Liang et al. [3] posture templates
are applied to the input data of each frame. The resulting
series of templates eventually forms a library of actions. The
authors use variable-length Markov models for learning.

Staying closer to the actual motion patterns one can also
break down actions into segments, using – for example –
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principal component analysis (PCA) as in Yamane et al. [4].
A motion sequence is here projected into a state space, which
is then mapped to the first n principal components. In that
reduced state space a threshold is applied and the action is
divided into two parts. The same is iteratively applied to
each subspace until some exit criteria is met. The resulting
segments could then be interpreted as meaningful action
parts.

There are also non-vision based methods available, for
example in Modayil et al. [5] and Liao et al. [6], but these
methods will not be discussed any further, as we are focusing
on vision here.

All these approaches are problematic, because it remains
difficult to smoothly link sensor signals (e.g. from scene
analysis) to symbolic action concepts and then back to the
signal domain for creating the trajectories needed for the
execution of an action by a robot. There is a danger of too
strongly focusing on the symbolic side or of remaining too
close to the signal domain.

Here we focus on manipulation actions and one goal of the
current study is to improve on this by introducing a deeper
hierarchy of several layers between signals and symbols for
analysing a scene in a given action context. We ask: What is
needed to push (or pick, or cut, etc.) a certain object? Which
are the general preconditions required for this regardless of
the actual objects in the scene? And – if those hold – are
also the specific conditions met to actually do it?

Again we build on our old framework using Semantic
Event Chains (SECs) Aksoy et al. [7] but now we extend
them in several ways. SECs are matrices that show how
touching relation between pairs of objects change in an
action. The entries of the SEC matrix are (“T”) for Touching,
(“N”) for Not touching and (“A”) for absent relation. A
manipulation actions is segmented at keyframes which are
moments that a touching relation changes. The original SEC
framework did not much care about objects. Here, based on
an older study [8], we will now incorporate (still abstract)
object roles to build an object-action-linked ontology of
manipulations, where these object roles define the general
preconditions that need to be met to perform a certain action
at all. On top of this we introduce a simple framework for
geometric reasoning allowing the machine to check specific
preconditions, too, to finally execute an action.

In this study the robot selects one object in a scene
and asks – like a child during play – what could I do
with it? The framework will then analyse the situation and
suggest possible manipulation actions, thereby addressing the
problem of context dependent affordances.



II. METHOD

This section divides into two parts: 1) definition of the
ontology and 2) algorithm to arrive at robotic execution of
manipulation actions using the ontology given an observed
scene. We start with the first aspect.

A. Ontology of Manipulation Actions

We use all manipulation actions defined in Wörgötter et al.
[8] and create a new ontology by incorporating three layers:
1) abstract object relations (SEC), 2) object topologies and
also 3) action primitives. Before doing this we need to define
the roles of object in a more general way.

Defining Object Roles: Those are determined by the
changes that occur following an action in the relation of
an object to other objects. An action involves at least two
objects: a hand and a main object. Resulting object categories
(hand, main, primary, secondary, etc.) and their abstract roles
are defined in table I.

We enumerate all possible actions; the resulting groups
are summarized in table II, we have:

1) Actions with main support,
2) Actions without main support,
3) Actions with load,
and several actions usually exist for each group. A

schematic of some sample actions from the three groups is
shown in figure 1. Due to lack of space we show the full
definition of the ontology only on our webpage1. Now we
can define the layers of the ontology.

Layer 1) SEC based object relations at start: The
individual graphical panels in figure 1 represent the columns
of a SEC which reflect the transition of object relations and
are the necessary condition for successful execution. Fig. 1b
shows a pick and place action; its corresponding SEC is
shown in figure 2. The SEC-defined pre-conditions, to allow
for an action, are encoded in the first column of a SEC.
If and only if these touching relations are not violated, the
action could commence. But this is not yet sufficient.

Layer 2) Object Topologies: All actions are always
performed at the main object and this will only be possible if
the SEC-pre-condition hold and if the main object appears
in the scene with certain topological connections to other
objects. The middle part of figure 2 shows which topologies
are permitted for pick and place.

Remarkably there are only three possible topological re-
lations to which all scenes that include the main object can
be reduced. To achieve this the complete connectivity graph
of who-touches-whom will be reduced into those subgraphs
that contain the main object. Each subgraph consists of
at least the main object and the support, and, if directly
touching neighbors exist, only one directly touching neighbor
(figure 3). There are three cases:

1) The main object has only one touching relation. The
touched object is a support, e.g. a table (see figure 3,

1http://www.dpi.physik.uni-goettingen.de/cns/index.php?page=ontology-
of-manipulation-actions
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Fig. 2: This figure shows one example action, pick and place, in
the proposed ontology repository, which is also shown in figure 1b.
It consists of three parts: the SECs (top), including the SEC pre-
condition (top with green bar), topological preconditions (middle),
and primitives (bottom).
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Fig. 3: All complex graph structures can be reduced to one of these
three graphs. “M” is the main object; “O” depicts other objects in
the scene on which we do not have any closer information. The
support is “S”.

left). A real world example as shown in figure 6b is
the blue plate which is on the board.

2) The main object has two touching relations. One is a
support, the second one is another object, which is also
touching the support (see figure 3, middle). In figure
3, the apple touches its support (green plate) and the
yellow pedestal which is on the same support.

3) The main object has two touching relations. It touches
its support and another object, which does not touch
the support (see figure 3, right). In figure 3, the pedestal
is on top the green plate and the jar is on top of the
pedestal (but does not touch the green plate).

These subgraphs determine the remaining preconditions.
For example, a tower structure as shown in figure 3 (right
graph) is not allowed for pick and place and pushing actions.

Layer 3) Movement Primitives: SEC pre-conditions and
topological pre-conditions define the first two layers of the



Object Category Description Relations and relation changes during the action

hand The object that performs the action not touching anything at the beginning and the end of action.
It touches at least one object.

main The object which is directly in contact with the hand not touching the hand at the beginning and the end of action.
It touches the hand at least once.

primary The object from which the main object separates initially touches the main object. Changes its relation to not-
touching during the action

secondary The object to which the main object joins initially does not touch the main object. Changes its relation
to touching during the action

load The object which is indirectly manipulated does not touch the hand. During the action either
touches/untouches the main and untouches/touches container.

container The object whose relation with load changes and it is not the
main object touches or untouches the load object

main support The object on which the main object is located touching the main object all the time
primary support The object on which the primary object is located touching the primary object all the time
secondary
support The object on which the secondary object is located touching the secondary object all the time

tool The object which is used by the hand to enhance the quality
of some actions touching the hand all the time

TABLE I: Object categories which are defined based on relation changes.

Category Sub-Category Example Actions

Actions with main support

Actions with hand, main and main support push, punch, flick
Actions with hand, main, main support and primary push apart, cut, chop
Actions with hand, main, main support and secondary push together
Actions with hand, main, main support, primary and secondary push from a to b

Actions without main support. (These
action have primary, secondary and
their supports)

primary 6= secondary and primary support 6= secondary support pick and place, break off
primary 6= secondary and primary support = secondary support pick and place, break off
primary 6= secondary and primary = secondary support put on top
primary 6= secondary and primary support = secondary pick apart
primary = secondary pick and place, break off

Actions with load and container The relation of load and main changes from N to T (loading) Pipetting
The relation of load and main changes from T to N (unloading) Pour, Drop

TABLE II: Summary of ontology of actions. Actions are divided into three categories and further into sub-categories. There can be more
than one action in each sub-category.

ontology. The third and last layer is a set of movement
primitives, which are needed to execute the action.

For the pick and place action, the primitives are shown
at the bottom of figure 2. The complete list of primitives
for all actions is shown on the web page. How to fill these
abstract primitives with execution relevant parameters will
be described later and the process of execution of actions is
then the same as in Aein et al. [9].

One primitive shall be explained in more detail: The
move(object, T ) primitive sends a command to the robot to
move to a pose which is determined by applying transform T
to the pose of object. The transform T has two parts, a vector
p which shows the translation, and a matrix R which shows
the rotation. For example, when we want to grasp the main
object, we perform a move(main, T ) primitive to move
the robot arm end effector to a proper pose for grasping.
Since we want the end effector to reach the main object, the
vector p in this case is equal to zero. However, the rotation
part R needs to be set such that the robot approaches the
main object from a proper angle. This is necessary to avoid
possible collisions with other object near the main.

B. Algorithm for Execution-Preparation

Figure 4 shows an overview of the algorithm used for
robotic execution of the above defined actions. Most com-

ponents rely on existing methods and will not be described
in detail.

We start with (1) an RGB-D recorded scene which is
(2) segmented using the LCCP algorithm [10] into different
objects from which (3) a graph is created with edges between
objects that touch each other. (4) Then we randomly choose
one object as main. (5) The complete list of all considered
manipulation actions, of which there are 29 (see Table III), is
derived from Wörgötter et al. [8] (only 3 are indicated in fig.
4) and (6) for all of them we use the first layer of the ontology
to check whether the main object in this scene fulfills their
SEC pre-conditions. This leads to (7) a first list of possible
actions and for those we check (8) with the second layer
of the ontology the topological pre-conditions by which the
list gets reduced. Now we can (9) use the third layer and
extract from the ontology the required action primitives. This
concludes the preparation stage and this information is sent
to the execution engine.

C. Execution-Parameterization: Geometric Reasoning

In order to execute any of the in-principle-possible actions
we need to parameterize them. In general we use our
action library from [9] where the required parameters are all
defined. They directly map to the action primitives from stage
(9) of the above described algorithm. Thus, we need to now
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(c) Action 3: Unloading.

Fig. 1: Schematic of actions in the ontology are shown for the three categories. From each category only one action is shown. The objects
are marked using the following convention: h= hand, m= main m.s= main support, p= primary, p.s= primary support, s= secondary,
s.s= secondary support.

consider the actual scene layout to find possible parameter
ranges for these movement primitives. For this we employ
geometric reasoning. The goal of this is that given an action
and its main object we want to find the directions which are
free to manipulate this object. These directions are directly
used to define parameter ranges of the action primitives (e.g.
move(object, T )) for action execution.

In figure 5 (top) a schematic example is shown, which
consists of two cubical point clouds. The main object is
shown in green and using a threshold we find all objects
around it (here one). In the example the primary object
is the blue cube. More objects can be taken into account
by applying the algorithm iteratively; we only analyze the
relative position between two objects each time.

First, we search for a local neighborhood of voxels from
the main to the primary object and compute a list of
distances from each point of the main object to each point
of the primary. Afterwards, we create a histogram of these
distances, as shown in figure 5 (top and middle). Now, we
search for the maximum in the histogram and use the points
in all m bins below the maximum which represent the local
neighborhood. In figure 5 (middle) these points correspond
to the red bars in the histogram and the red points in the two
blocks. m is the only parameter of this method and depends
on the point cloud quality. For smaller objects or lower

5 10 15

C
ou

nt

Binned distance

+ =

Fig. 5: Schematic example of how to perform geometric reasoning.

resolution a bigger m is needed. We have found heuristically
that using all points up to the maximum usually leads to good
results.

After identifying the neighboring points we compute the
normals of those and cluster the normals via k-means clus-
tering. Now, each cluster points from the main object to
the primary; these clusters show the “blocked” sides and
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Fig. 4: The steps of our proposed framework for scene affordances and execution are summarized here. Starting with a real world scene
(1), we perform object segmentation (2) and graph calculation (3). Afterwards, a list of candidate actions is produced (5). The possibility
of performing these actions is investigated in two steps by using the preconditions inside the ontology (6-8). We get the primitives from
the ontology and send them to the execution engine. In case of move(object) primitives, we perform the proposed geometric reasoning
to get the parameters.

if inverting this we get the “free” directions. This means
each cluster divides the space with into one “free” and
one “blocked” part. Adding up all “blocked” parts we can
compute the “free” access angles. An example is shown in
figure 5 at the bottom.

K-means clustering needs the number of clusters (“k”) as
input parameter. As underfitting is harmful to our algorithm,
but overfitting is not, we set k to rather higher values (usually
k = 8 yields good results in real world examples).

The results of this type of reasoning on real scenes will
be shown in Section III.

III. EXPERIMENTS

A. Setup and Experiments

We tested the algorithm in a ROS based system [11]. For
vision sensors a Microsoft Kinect for 3D data and a high
resolution Nikon DSLR camera are used. We used [12] for
object recognition and pose estimation. For model tracking
[13] is used. Our robot is a Kuka LWR arm which executes
actions as described in Aein et al. [9]. Figure 6 shows three
scenes are used for testing:

1) A cup is next to a box and a cup is on top of a pedestal.
2) The scene that we used in previous sections.

3) A cluttered kitchen scene with many objects.
A movie showing the execution of selected actions can be

found in the supplementary material.

B. Results

Using these scenes, we analyse first the effect of the top
two layers of the ontology asking: Given a main object,
which actions are in principle permitted. Next, we will
consider the third ontology layer and perform geometric
reasoning on some examples to show how actual action pa-
rameterization can be performed and finally we will perform
some actions with the robot.

1) Action Affordances: The results of action affordances
for the three scenes are calculated by using the preconditions
in the ontology and analysis of subgraph structures. The
results are summarized in Table III. Each column shows the
possibility of performing different actions in the ontology for
a specific selection of main, primary and secondary objects.

Here, we can see some limitations of the SEC domain.
Some actions require additional high level object knowledge
(e.g. stirring or levering) and are marked with “n”; for
example stirring is always denied as it requires a liquid and
a container shaped object (non-permanent objects pose a big



(a) Scene 1. (b) Scene 2. (c) Scene 3.

Fig. 6: These three scenes are used to test the algorithms.

Fig. 7: Qualitative results for the geometrical reasoning method.
The algorithm is applied to the object pair apple and red pedestal.
For graphical purposes only the largest cluster is shown with a red
arrow.

problem for SECs or planning in general). These properties
cannot be measured in the SECs domain. One could argue
that also cutting, kneading, or scooping needs additional high
level object knowledge, but on the touching relations level
these preconditions can be ensured.

2) 3D Geometrical Reasoning: Qualitative results of ge-
ometric reasoning are shown in figures 7, 8, and 9. These
results show that by processing the low level point clouds
one can detect the blocked and free directions of a given
object. Some limitations can be found for scene 2 in figure
8a.

We expect that we can compute the normals of the point
cloud, but at corners, e.g. at the border of object point
clouds, this assumption is not always met and the resulting
access angles are slightly off. Another problem can be seen
in scene 3. In figure 9c, the relations between the orange
spoon and the black spoon in the spoon holder (black spoon
and spoon holder are recognized as one object) form one
unexpected cluster downwards, all others point towards the
spoon. Careful examinations show that there actually are
some points belonging to the spoon base below the orange
spoon and that the arrow downward is justified. However,
the resulting access angle is very small.

3) Action Execution: The results of action execution are
presented in the video attachment of the paper. The execution
of three different actions is shown: “pushing”, “pick and
place”, and “put on top”.

IV. CONCLUSION

The goal of this study was to address the problem of
affordances given the scene context. We specifically wanted
to create a system that can look at objects in a scene and
suggest actions which are very likely possible. For this we
first defined a novel and hopefully quite complete ontology
of manipulation actions which considers objects, too, but still
from a rather abstract viewpoint. The main point here is that
this allows generalizing the same action across quite different
scenes. Combined with geometrical reasoning this system
can analyse scenes and suggest and perform many actions.

Thus, essentially the here-suggested system acts like a
multi-layered planner with several levels of pre- and post-
conditions. This may indeed ease robotic planning problems
by allowing the system to check all conditions in a hierarchy
and to finally profit from the geometrical link to the actual
scene layout.

Of course, situations may exist that cannot be correctly
disentangled this way. The resulting permitted movement
directions are always based on parts of the 3D space that
had been derived from straight direction vectors. Hence if
there is a complex shaped object that hooks-around some
other object this type of geometric reasoning will fail. Also,
if objects are topologically linked (physically connected) in
complex ways to other objects the approach will fail. Our
system does not attempt to solve all these problems. Rather,
like a child after some experience, here we have arrived at
a system that produces very reasonable suggestions about
how to modify its world using different manipulations. This
is the main strength of this approach. We have here a quite
powerful bottom-up decision framework, which does not rely
on high-level knowledge but could be extended by this (for
example using learned models of some aspects of the world)
without problems.
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