
Advanced Robotics, 2013
Vol. 27, No. 13, 1023–1031, http://dx.doi.org/10.1080/01691864.2013.814211

FULL PAPER

Efficient sensorimotor learning from multiple demonstrations

Bojan Nemec∗, Rok Vuga and Aleš Ude

Humanoid and cognitive robotics lab, Department of automatics, biocybernetics and robotics, Jožef Stefan Institute, Jamova 39, 1000
Ljubljana, Slovenia

(Received 25 December 2012; accepted 26 April 2013)

In this paper, we present a new approach to the problem of learning motor primitives, which combines ideas from
statistical generalization and error learning. The learning procedure is formulated in two stages. The first stage is based
on the generalization of previously trained movements associated with a specific task configuration, which results in
a first approximation of a suitable control policy in a new situation. The second stage applies learning in the subspace
defined by the previously acquired training data, which results in a learning problem in constrained domain. We show that
reinforcement learning in constrained domain can be interpreted as an error-learning algorithm. Furthermore, we propose
modifications to speed up the learning process. The proposed approach was tested both in simulation and experimentally
on two challenging tasks: learning of matchbox flip-up and pouring.

Keywords: robot learning; trajectory generation; error learning

1. Introduction
One of still unresolved issues in the contemporary robotics
is how to create a fully autonomous robot, which makes
decisions based solely on its sensors, feedback and using
previous experience. In order to achieve this goal, effi-
cient and robust learning algorithms are needed. Among
the most promising frameworks to bring traditional robotics
towards true autonomy is the reinforcement learning (RL).
One of the problems in RL of robot actions is a potentially
huge search space. Robot actions are usually encoded using
parameterized motor primitives, where the number of
parameters required to encode the robot skill is relatively
high. This makes RL extremely challenging. Recently, new
algorithms such as Policy Improvement with Path Integrals
(PI2) [1] and Policy Learning by Weighting Exploration
with the Returns (PoWER) [2] were developed to handle
efficiently learning in high dimensions.

However, despite these efforts, learning capabilities of
robots still cannot be compared to those of humans. Humans
can quickly adapt to new situations by generalization. In
contrast, robots often have to relearn whole trajectories,
even when good initial policy parameters are provided. It
turns out that the initial guess of search direction in the learn-
ing process is in most cases more important than the initial
guess of the parameters itself. Many approaches dealing
with the problem of how to make learning more efficient rely
on reducing the number of learned parameters. It often turns
out that only a limited number of parameters are relevant

*Corresponding author. Email: bojan.nemec@ijs.si

for a specific task. For example, Scholz and Schöher [3]
studied the stand-up task in humans and found out that the
center of mass is among the most relevant parameters. Kor-
mushev et al. [4] dealt with archery skill using a humanoid
robot and suggested an algorithm, where the parameter up-
dates are formed as a linear combination of parameters
reweighted according to the reward in the previous trial.
Grollman and Billard [5] proposed a learning method, where
the search space is constrained to lie between two unsuc-
cessful demonstrations. For the underlying representation,
they used Gaussian Mixture Models (GMMs). Recently,
another approach was suggested by Kober et al. [6], where
the sensorimotor policy was improved by adapting a small
set of global parameters, called meta-parameters. Similar
idea was evaluated in [7], where we combined ideas of
statistical generalization and RL in order to achieve the
same goal. The key idea was to limit the potentially huge
search space of the parameterized policy by using previous
experience and to generalize to new policies from similar
cases. Moreover, generalization from similar cases provides
good initial guess of the search directions. Instead of tuning
of all policy parameters, the proposed method learns the ap-
propriate query regarding the desired goal from a simplified
and sparse statistical model.

In this paper, we show that RL in constrained domain
can be represented as an error-learning algorithm.[8] In this
case, the learning problem turns into the problem of finding
the zero of a unimodal function, which enablesus to use

© 2013 Taylor & Francis and The Robotics Society of Japan

D
ow

nl
oa

de
d

by
 [1

25
.2

01
.0

.5
8]

 a
t 0

8:
37

 1
8

Ju
ly

 2
01

3

1024 B. Nemec et al.

the well-developed theory of the line-search algorithms.[9]
This way we minimize the number of trials required to learn
the desired sensorimotor policy. We evaluate these ideas on
two challenging tasks: learning to flip up a matchbox and
pouring. In the first case, the robot has to learn how to hit the
matchbox lying on a table in such a way that it flips upright.
In the second case, the robot has to learn how to pour an
equal quantity of liquid into a glass from bottles containing
different volumes. The paper is organized in six chapters.
In the second chapter, we present a statistical method for
generalization of actions from previous examples, where
we used Dynamic Motion Primitives (DMPs) for the un-
derlying trajectory representation. In the third chapter, we
introduce DMP parameters learning in constrained domain
using the policy gradient RL. Error learning is evaluated
in the fourth chapter. The simulation and experimental re-
sults are outlined in the fifth chapter. Final remarks and
conclusions are given in the sixth chapter.

2. Action generalization from previous experiences
In this section we present the basic procedure for the gener-
alization of actions to new situations that are not available
in the database of movements. First we have to choose
the appropriate action representation. For this purpose, we
use dynamic movement primitives (DMPs) developed in
[10]. With this representation, every degree of freedom is
described by its own dynamic system, but with a common
phase to synchronize them. In the case of point-to-point
(discrete) movements, the trajectory of each robot’s degree
of freedom y (given either in joint or in task space) is
described by the following system of nonlinear differential
equations

τ ż = αz(βz(g − y) − z) + f (x), (1)

τ ẏ = z, (2)

τ ẋ = −αx x, (3)

where x is the phase variable and z is an auxiliary variable.
αx , αz , βz , and τ are constants that need to be specified
in such a way that the system converges to the unique
equilibrium point (z, y, x) = (0, g, 0). The nonlinear term f
contains free parameters that enable the robot to follow any
smooth point-to-point trajectory from the initial position y0
to the final configuration g

f (x) =
∑N

k=1 wk$k(x)
∑N

k=1 $k(x)
x,

$k(x) = exp
(
−hk (x − ck)

2
)

. (4)

Here, ck are the centers of radial basis functions distributed
along the trajectory and hk > 0 their widths. Weights wk
and the goal position g are computed in such a way that the
DMP encodes the desired trajectory.

Lets assume that we have a set of example trajectories
together with the parameters characterizing the task

Z =
{

yk
d (tk, j), ẏk

d (tk, j), ÿk
d (tk, j); qk | k = 1, . . . , M,

j = 1, . . . , Tk

}
,

(5)

where yk
d (t j), ẏk

d (t j), and ÿk
d (t j) are the measured posi-

tions, velocities, and accelerations on trajectory k, repsec-
tively; M is the number of examples; and Tk is the number of
sampling points on each trajectory. Indexing of the degrees
of freedom is omitted from Equation (2) for clarity. qk ∈ Rn

are the parameters describing the task in a given example
situation. The trajectories can be specified in either joint or
task space. The issue is how to generate a DMP specifying
a movement for every new query point q, which in general
will not be one of the example queries qk .

To generalize the example movements to new situations,
we need to learn a function

G(q; Z) $−→ [wT , τ, g]T = θ. (6)

In general, the functional relationship between q and
[wT , τ, g]T given in a set of examples Z is unknown. Note
that G(q; Z) becomes a function only by constraining the
generalized trajectories to be as similar as possible to the
example trajectories. For example, there are many different
ways of how to throw the ball into the basket The rela-
tionship between the basket positions (query point) and
DMP parameters describing the robot motion becomes a
function only by requiring that the generalized movements
are similar to the example movements. In most cases, it
is difficult to find a global model that provides a good
approximation for the function G(q; Z). We therefore avoid
global model identification and rather apply regression tech-
niques to generalize the movements. Due to significantly
different sizes of data-sets involved in the calculation of
parameters w on the one hand, and g and τ on the other
hand, different methods can be utilized to estimate them. In
particular, in [11] we applied locally weighted regression for
the estimation of the shape parameters and Gaussian process
regression [12] to estimate g and τ . More details about this
work can be found in [11]. The important point for this paper
is that a functional relationship between the query points
and the DMP can be learned from example movements. The
accuracy of the generalized motion depends on the nature of
the problem and the number and density of the query points.
If there are only few query points, we might not reach the
desired performance and we have to refine the generated
movement by means of RL.

3. Policy learning in constrained domain
The general goal of policy gradient learning is to optimize
the policy parameters θ ∈ Rk , maximizing the expected
return of the state value cost function

D
ow

nl
oa

de
d

by
 [1

25
.2

01
.0

.5
8]

 a
t 0

8:
37

 1
8

Ju
ly

 2
01

3

Advanced Robotics 1025

J (θ) = E

[
H∑

k=0

akrk(θ)

]

, (7)

where k is the time step, ak are time step- dependent
weighting factors, H is the horizon which can be infinite
and rk is the reward received at each time step. It has
become a widely accepted alternative to the value function-
based RL procedure.[13] Here, we assume that our task can
be described as an episodic task. The general parameter
update rule of the policy gradient methods, which follows
the steepest descent on the expected return, is

θm+1 = θm + αm∇θ J (θ), (8)

where αm denotes the learning rate. If the gradient estimate
is unbiased and the learning rate fulfills

∑∞
m=0 αm > 0 and∑∞

m=0 α2
m = const, the learning process is guaranteed to

converge at least to a local minimum.[14] One of the most
important advantages of the policy gradient methods over
the traditional RL techniques is that we can easily limit and
control the update steps. Namely, a drastic change of param-
eters can be hazardous for the robot and its environment.
Additionally, drastic changes make the initialization of the
policy based on domain knowledge or imitation learning
useless, as the initial parameters can vanish after a single
update step.[15]

The main problem of policy gradient methods is how to
obtain a good estimator for the policy gradient ∇θ J (θ). If
the deterministic model of the system (environment) was
available, we could compute this gradient by

∇ J = ∂
∑H

k=0 akrk

∂θ
. (9)

Unfortunately, such a model is normally not available; there-
fore, a number of policy gradient estimation methods were
proposed, such as finite gradient methods,[14] likelihood
ratio methods,[16] natural policy gradients,[17] etc. Policy
gradient estimation becomes problematic as the dimension-
ality of policy parameters increases, since a large number of
trials have to be performed in order to accurately estimate
the gradient. However, if a sufficient amount of previous
experiences is available to perform statistical generalization
(as described in Section 2), we can estimate the mapping
from some lower dimensional parameters q to the corre-
sponding policy parameters θ. Let us assume that G(q; Z)

is an exact (ideal) function and Ĝ (q; Z) its approximation
and that the relationship θ = G(q; Z) = Ĝ (q + &q; Z)

exists. Then, the learning problem defined in Equation (7)
can be converted into

Ĵ (q) = E

[
H∑

k=0

akr̂k(q)

]

, (10)

r̂k(q) = rk(Ĝ (q; Z)), (11)

and the update step (8) becomes

qm+1 = qm + αm∇q Ĵ (q), (12)

where the dimensionality of q is much lower than that of θ.

4. Error learning
Let us assume now that our task is of finite horizon and that
we can obtain only the final reward, i.e. r = rH , and that
the success of our policy can be described with a vector
ε, which denotes the difference between the desired query
q0 and the actually obtained query qa = q0 + &q =
Ĝ−1(G(q; Z); Z)|q=q0 ,

ε = q0 − qa . (13)

We define the final reward as (1) r = εT ε and (2) r = e−εT ε

(see Figure 1(a)). Let us compute ∇q Ĵ for both cases

∇q Ĵ = −2
∂qa

∂q
ε ≈ −Kε, (14)

∇q Ĵ = 2e−εT ε ∂qa

∂q
ε ≈ e−εT εKε, (15)

where the matrix K is an approximation for the partial
derivative ∂qa

∂q = ∂
∂q

(
Ĝ−1 ◦ G

) ∣∣∣
q=q0

around the desired

query point. Note that in the case of the ideal generalization,
i. e. G = Ĝ, this matrix is an identity matrix. In practice, the
matrix K can be approximated using numerical derivatives
of the generalization function. Taking into account that in
the case of cost function (14) we have to minimize the cost
while in the case of (15) we have to maximize it, we obtain
the following two update rules:

qm+1 = qm + Kε, (16)

and
qm+1 = qm + e−εT εKε. (17)

The first update rule is the well-known error-based learning
algorithm [8] and the second is the weighted version of the
error-based learning. The second algorithm weights ε and
prevents large parameter updates at large ε, as shown in
Figure 1(b).

Another representation of the error-based learning in one
dimension of q is shown in Figure 2. Assuming the ideal
mapping Ĝ (q; Z) = G(q; Z) as defined by Equation (6),
every desired query q maps to the actual query qa . In real sit-
uations, the generalization is seldom ideal. Figure 2 shows
three cases, (a), (b) and (c), where an ideal mapping is
represented with a black line and actual (real) mapping is a
green curve. In the case (a), actual mapping q $−→ qa is
a continuous function and the gradient has the same sign
as the ideal mapping. This is the most favorable case for
the error-based learning. The learning algorithm searches in
the direction defined by the ideal mapping. The blue circle
denotes actual query qa , red circle the desired query q, and
the yellow circle the solution found using the search along
the ideal mapping. In the case (b), the actual mapping is
again a continuous function, but the gradient of the actual
mapping changes the sign. This implies that the mapping

D
ow

nl
oa

de
d

by
 [1

25
.2

01
.0

.5
8]

 a
t 0

8:
37

 1
8

Ju
ly

 2
01

3

1026 B. Nemec et al.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4
REWARD FUNCTION

ε

r

ε2

e−ε2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
UPDATE FUNCTION

ε

∆
q

Kε

4Ke−ε2
ε

(a) (b)

Figure 1. Reward and update function for both cases.

Figure 2. Mapping of the desired query to the actual query.

q $−→ qa is not unique; we might have multiple solutions.
Nevertheless, error-based learning can still find the solution,
but this might not be the closest one. The third case (c) shows
the situation where the real mapping is not a continuous
function and where the search along the ideal mapping
does not lead to the desired solution-obtaining the desired
qa . Note that the generalization and thus the error-based
learning always returns a solution, but this solution does
not necessary map to the desired actual query. This is the
case where the learning in constrained domain leads only to
an approximate solution. In such a case, we should proceed
with the policy learning in the full parameter space θ, as it
was proposed in [7].

Error learning requires appropriately chosen gain matrix
K, which might vary from case to case. For an autonomous,
robot this is a problem because we cannot afford to guess
the learning parameters for each specific case. Moreover,
fixed gain is not appropriate since the mapping q $−→ qa is
not linear as a rule (see Figure 2). If this mapping was linear,
then the statistical model used for generalization would
already be perfect and we would not need any learning at
all.

Error learning can be interpreted as a problem of find-
ing the zero of a unimodal function, which enables us to
use the well-known line-search algorithms.[9] The line-
search approach starts with a decent direction along which
the objective function qa should be minimized and then
computes a step size that decides how far q should move
along that direction. The descent direction can be computed

Algorithm for error learning with golden section search

set search limits ql and qh
set desired query q0
set q = q0
repeat

generalize trajectory for query q
execute trajectory, get qa
calculate error ε = q0 − qa
if = ε > 0

ql = q
q = ql + (qh − ql) ∗ 0.618

else
qh = q
q = ql + (qh − ql) ∗ 0.382

until ε < desired precision

by various methods, such as gradient descent, Newton’s
method and Quasi-Newton method.[9] The majority of line
search approaches require the computation of the value of
the objective function qa at each iteration step, which is
not appropriate for sensorimotor learning. Since we do not
have any initial model of the q $−→ qa , we would have to
perform one trial for each iteration, which would be very
time consuming. In order to minimize the number of trials,
we use the golden section search algorithm for finding the
zero of the function ε.[18] It requires only a single trial for
each optimization step.

D
ow

nl
oa

de
d

by
 [1

25
.2

01
.0

.5
8]

 a
t 0

8:
37

 1
8

Ju
ly

 2
01

3

Advanced Robotics 1027

Figure 3. Simulated environment for the matchbox flip-up
learning.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

45

90

135

180
measured angles

time [s]

de
g

1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

4
estimated ε

de
g

trials

1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0
learned query

de
g

trials

1st trial
2nd
3rd
4th

Figure 4. Angles and error convergence of the matchbox flip-up
learning in simulation.

5. Simulation and experimental results
The proposed learning approach was evaluated both in sim-
ulation and on a real robot. Two case studies were carried
out: the first case was to flip up matchbox to stand upright on
a narrower side. The second case was learning of a barman
skill, where the robot had to learn how to pour an equal

quantity of the liquid into a glass from bottles containing
different volumes.

For the first experiment, we used the seven degrees of
freedom of a Mitsubishi Pa-10 robot equipped with Barrett
hand and a vision system for the matchbox tracking at
120 Hz. For simulation, we used our own Matlab Simulink
simulation system.[19] Human- demonstrated trajectories
were captured by the Optotrak motion capture system, where
we measured the wrist motion. The middle finger motion
was captured using Cyber glove. Note that matchbox flip-
up is a very challenging task even for humans. Most humans
can succeed to do it only occasionally. For this reason, we
recorded two unsuccessful attempts. In the first attempt, the
matchbox flipped back and in the second, it flipped over.
Every example trajectory Z was generated by mapping the
recorded Cartesian human wrist motion to the robot wrist
motion and the human middle finger motion to the joint
motion of the middle finger of Barret Hand. Since we had
only two demonstration trajectories, generalization problem
defined in Equation (6) was reduced to the simple linear
interpolation.

Next, we defined the reward function. Intuitively, when
the matchbox flips back, the reward is given upon how close
it came to the upright position by measuring the angle.
When it flips forward, the reward is assigned upon the
angular velocity in the upright position, which is identical
to the angle measured few instances after the matchbox has
reached the upright position. Thus, the error ε is defined as

ε =
{

ϕmax − π
2 if flipped back

ϕ(t0 + &t) − π
2 if flipped over

(18)

where ϕmax is the maximal angle that the matchbox has
reached, t0 is the time when the matchbox has reached the
upright position, and &t a suitably chosen time interval, in
this task 0.05 s.

First, we tested the learning in simulation. The dynamics
of the matchbox flip was simulated using ODE.[20] Fig-
ure 3 shows an instance of the simulated task. We applied
the error-based learning of Equation (16) to optimize the
task. The gain K was set to the identity matrix I. In a
simulated environment, the robot succeeded to learn the
appropriate policy for matchbox flip-up task in four trials.
Figure 4 shows error convergence. The same experiment
was repeated also on the real robot, as shown in Figure 5.
The results are shown in Figure 6. Due to noise introduced
by the real hardware into the system, the error oscillates
around 0 until it reaches a steady state 0 in five trials.

The desired query can lie inside or outside the interval
defined by the queries of the example trajectories. Most gen-
eralization techniques are able to generalize in both cases,
although the performance deteriorates as the query moves
further away from the example interval. Consequently, our
learning technique can be applied to both cases. To show
this, we simulated the same task using demonstrations where

D
ow

nl
oa

de
d

by
 [1

25
.2

01
.0

.5
8]

 a
t 0

8:
37

 1
8

Ju
ly

 2
01

3

1028 B. Nemec et al.

Figure 5. Learning of matchbox flip-up with the real robot.

the matchbox has flipped back in both demonstrations.Also,
in this case, the robot succeeds to learn the appropriate
policy, as we can see in Figure 7. In general, the proposed
learning method requires only a rough estimation for the
direction of the parameter update and this direction is esti-
mated from the demonstration trajectories and the associ-
ated queries.

The second experiment was conducted on a humanoid
torso composed of two KUKA LWR arms with seven de-
grees of freedom, Barret hands, and seven degrees of free-
dom humanoid head with foveal and peripheral stereo

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

45

90

135

180

measured angles

de
g

time [s]

1 2 3 4 5 6 7 8
−15

−10

−5

0

5

10

15

20
estimated ε

de
g

trials

1st trial
2nd
3rd
4th
5th
6th
7th
8th

Figure 6. Estimated angles and error convergence of the
matchbox flip-up learning on the real robot.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

45

90

135

180
measured angles

time [s]

de
g

1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

4
estimated ε

de
g

trials

1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0
learned query

de
g

trials

1st trial
2nd
3rd
4th
5th
6th

Figure 7. Angles and error convergence of flip-up learning in
simulation. The demonstration trajectories caused matchbox to
flip to the same side.

vision, as shown in Figure 8. The task was to learn how
to pour equal quantity of liquid into a glass from bottles
containing different volumes of liquid. We provided two
demonstration trajectories, wherein both cases 0.2 l of liquid

D
ow

nl
oa

de
d

by
 [1

25
.2

01
.0

.5
8]

 a
t 0

8:
37

 1
8

Ju
ly

 2
01

3

Advanced Robotics 1029

Figure 8. Real pouring setup.

0 1 2 3 4 5 6 7 8 9

−0.1

−0.05

0

0.05

0.1
pouring error

vo
lu

m
e

[l]

0.4
0.6
0.8

0 1 2 3 4 5 6 7 8 9

0.2

0.4

0.6

0.8

vo
lu

m
e

[l]

trials

learned query

0.4
0.6
0.8

Figure 9. Convergence of the simulated pouring error and the
learned query for different volumes in the bootle.

was poured into the glass from a bottle containing 0.3 l and
1.0 l of liquid, respectively. Demonstration trajectories Z
were obtained using kinesthetic guiding, where the demon-
strator manually guided the robot in a zero-gravity mode.
Joint trajectories were captured directly by reading the robot
sensors, mapped into Cartesian coordinates and encoded as
DMPs using Equations (1)–(4). The quantity of the poured
liquid was measured with a precision scale. The task was
to learn how to pour 0.2 l of liquid from a bottle containing
0.5 l of liquid. For this case, error learning with the fixed
gain was less successful. It required much higher gains for
learning to pour from the bottles containing lower volumes
of liquid compared to the bottles containing higher volumes.
For this reason, we applied golden section search algorithm
to speed up learning. Figure 9 shows the convergence of

learning in simulation. A snapshot of the simulated envi-
ronment is shown in Figure 10. The golden section cut
algorithm assured similar learning rates regardless of the
query point, which is the volume of liquid in the bottle
this case. The same experiment was repeated using the real
robot. Figure 11 shows the resulting convergence and the
learned query for this case. Note the extremely fast learning
rate; the robot was able to learn the appropriate policy in
just few trials.

Video of our experiments is available at http://
www.ijs.si/usr/aude/ar.mov

Figure 10. Simulation of pouring.

D
ow

nl
oa

de
d

by
 [1

25
.2

01
.0

.5
8]

 a
t 0

8:
37

 1
8

Ju
ly

 2
01

3

1030 B. Nemec et al.

0 1 2 3 4 5 6 7 8 9

−0.1

−0.05

0

0.05
pouring error

vo
lu

m
e

[l]

0 1 2 3 4 5 6 7 8 9
0.3

0.4

0.5

trials

vo
lu

m
e

[l]

learned query

Figure 11. Convergence of the pouring error and the learned query
on the real robot.

6. Conclusions
In this paper, we presented a novel approach to skill learning
that combines ideas from the statistical generalization and
error learning. In the first stage, we generalize the available
training data to compute a control policy suitable for the cur-
rent situation. This initial approximation is further improved
using learning on the subspace defined by the training data,
which results in learning in a state space of reduced dimen-
sionality. The main advantage of the proposed algorithm is
that the direction of the parameter update is computed from
the initial database containing the demonstration trajecto-
ries. For the same reason, we can apply error learning, which
turns out to be the most effective learning method when at
least approximate direction of parameter update is available.
The proposed approach was verified both by simulation
and on the real robot for the matchbox flip-up task and
for learning how to pour from bottles containing different
volumes of liquid. Simulation, as well as the experimen-
tal results, exhibits exceptionally fast learning rate of the
proposed approach. In our experiments, we demonstrated
that the robot can learn the desired policy with very sparse
statistical knowledge encoded as Z. In both experiments
only two demonstration trajectories sufficed for learning the
generalization to the given tasks. In general, the richer the
initial knowledge is, the fewer learning steps are required
for generalization to a new case. Moreover, the robot could
add newly learned trajectories together with the associated
queries to the data-base, thus speeding up the learning for
new situations as they arise. For example, for the second
experiment the robot will require fewer and fewer learning
steps to learn how to pour different levels of liquid into a
glass from bottles containing different volumes of liquid.

Acknowledgement
The research leading to these results has received funding from
the European Community’s Seventh Framework Programme

FP7/2007-2013 (Programme and Theme: ICT-2011.2.1, Cognitive
Systems and Robotics) under grant agreement no. 600578, ACAT.

Notes on contributors
Bojan Nemec is senior research associate
at Dept. of Automatics, Biocybernetics and
Robotics, Jožef Stefan Institute. He received
BS, MSc and PhD degree from the Univerity
of Ljubljana. He spent his sabbatical leave at
the Institute for Real-Time Computer Systems
and Robotics, University of Karlsruhe. His
research interests include robot control, robot
learning, sensor guided control, service robots

and biomechanical measurements in sport. He has published over
150 conference and journal papers and co-author of a book.

Rok Vuga received a master’s degree at
Faculty of Electrical Engineering, University
of Ljubljana, Slovenia in October 2011. He
is currently pursuing a PhD at University
of Ljubljana. He holds a Young Researcher
position at Humanoid and Cognitive Robotics
Lab, Dept. of Automatics, Biocybernetics and
Robotics, Jožef Stefan Institute, Ljubljana. He
was a guest researcher at ATR Computational

Neuroscience Laboratories in summer 2012 and spring 2013. His
research interests include knowledge extraction from observation,
reinforcement learning, and balancing for humanoids.

Aleš Ude received the Diploma degree in
applied mathematics from the University of
Ljubljana, Slovenia, and the PhD degree
from the Faculty of Informatics, University
of Karlsruhe, Germany. He was awarded the
Science and Technology Agency fellowship
for postdoctoral studies in ERATO Kawato
Dynamic Brain Project, Japan. He is currently
the head of Humanoid and Cognitive Robotics

Lab, Department of Automatics, Biocybernetics, and Robotics,
Jožef Stefan Institute, Ljubljana. He is also associated with
the ATR Computational Neuroscience Laboratories, Kyoto,
Japan. His research interests include autonomous robot learning,
imitation learning, humanoid robot vision, perception of human
activity, humanoid cognition, and humanoid robotics in general.

References
[1] Theodorou EA, Buchli J, Schaal S. A generalized path

integral control approach to reinforcement learning. J. Mach.
Learn. Res. 2010;11:3137–3181.

[2] Kober J, Peters J. Policy search for motor primitives in
robotics. Mach. Learn. 2011;84:171–203.

[3] Scholz JP, Schöner G. The uncontrolled manifold concept:
identifying control variables for a functional task. Exp. Brain
Res. 1999;126:289–306.

[4] Kormushev P, Calinon S, Saegusa R, Metta G. Learning the
skill of archery by a humanoid robot iCub. In: Proceedings –
IEEE-RAS International Conference on Humanoid Robots;
Nashville, TN; 2010.

[5] Grollman DH, BillardA. Donut as I do: Learning from failed
demonstrations. In: Proceedings – 2011 IEEE International
Conference on Robotics and Automation; Shanghai, China;
2011. p. 3804–3809.

D
ow

nl
oa

de
d

by
 [1

25
.2

01
.0

.5
8]

 a
t 0

8:
37

 1
8

Ju
ly

 2
01

3

Advanced Robotics 1031

[6] Kober J, Wilhelm A, Oztop E, Peters J. Reinforcement
learning to adjust parametrized motor primitives to new
situations. Auton. Robot. 2012;33:361–379.

[7] Nemec B, Vuga R, Ude A. Exploiting previous experience
to constrain robot sensorimotor learning. In: 2011 11th
IEEE-RAS International Conference on Humanoid Robots;
Bled, Slovenia; 2011. p. 727–723.

[8] Wolpert DM, Diedrichsen J, Flanagan JR. Principles of
sensorimotor learning. Nat. Rev. Neurosci. 2011;12:739–
751.

[9] Nocedal J, Wright S. Numerical optimization. New York:
Springer; 1999.

[10] Ijspeert AJ, Nakanishi J, Hoffmann H, Pastor P, Schaal S.
Dynamical movement primitives: learning attractor models
for motor behaviors. Neural Comput. 2013;25:328–373.

[11] Ude A, Gams A, Asfour T, Morimoto J. Task-specific
generalization of discrete and periodic dynamic movement
primitives. IEEE Trans. Robot. 2010;26:800–815.

[12] Rasmussen CE, Williams C. Gaussian processes for machine
learning. Cambridge (MA): MIT Press; 2006.

[13] Sutton R, Barto A. Reinforcement learning: an introduction.
Cambridge (MA): MIT Press; 1998.

[14] Peters J, Schaal S. Reinforcement learning of motor skills
with policy gradients. Neural Networks. 2008;21:682–697.

[15] Schaal S. Is imitation learning the route to humanoid robots?
Trends Cogn. Sci. 1999;3:233–242.

[16] Williams RJ. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Mach.
Learn. 1992;8:229–256.

[17] Kakade SA. Natural policy gradient. Adv. Neural Inf.
Process. Syst. 2002;14:1531–1538.

[18] Teukolsky W, Vetterling S, Flannery W. Numerical recipes:
the art of scientific computing. 3rd ed. NewYork: Cambridge
University Press; 2007.

[19] Nemec B, Žlajpah L. Modeling of robot learning in
Matlab/Simulink environment. In: Proceedings of EU-
ROSIM International Conference; Prague, Czech Republic;
2010 Sep.

[20] Smith R. Open dynamic engine. 2001. Available from:
http://www.ode.org

D
ow

nl
oa

de
d

by
 [1

25
.2

01
.0

.5
8]

 a
t 0

8:
37

 1
8

Ju
ly

 2
01

3

