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Abstract— In this paper we discuss, within the context of
artificial assistants performing everyday activities, a resolution
method to disambiguate missing or not satisfactorily inferred
action-specific information via explicit clarification. While argu-
ing the lack of preexisting robot to human linguistic interaction
methods, we introduce a novel use of Controlled Natural
Languages (CNL) as means of output language and sentence
construction for doubt verbalization. We additionally provide
implemented working scenarios, state future possibilities and
problems related to verbalization of technical cognition when
making use of Controlled Natural Languages.

I. INTRODUCTION

In everyday routine activities, robotic assistants and co-
workers will have to perform a variety of tasks for which
they cannot be pre-programmed because they are not known
at production time. Research in the field of cognitive robotics
envisions service robots that autonomously acquire new skills
and adapt existing ones to new tasks and environments.
They must decide on how to perform a particular activity at
runtime, which requires them to infer the appropriate actions
to be executed on the appropriate objects in an appropriate
way. They have to perform what is commonly referred to
as everyday activity, which has been proven to be a very
knowledge-intensive task [1], [2]. It requires context aware-
ness and flexibility in action parametrization when operating
in real world settings with partially available information,
which is referred to as the “open world challenge”.

Recent research in the field of cognitive robotics aims to
make knowledge sources available for robots, which have
been created by humans and are intended for human use. For
some domains such as daily household tasks (e.g. cooking,
cleaning up), step-by-step plans and recipes from web pages
like wikihow.com have been successfully used for feeding
such common sense knowledge about actions and objects
into knowledge bases of mobile robotic platforms and for
transforming such recipes into executable robot plans [3].

However, as these recipes are presented in natural lan-
guage, severe ambiguity, vagueness and underspecification
have been identified as major challenges in translating such
specifications into plans, since many missing key pieces
of information are generally considered common sense to
the human. As an example, consider the natural-language
instruction “Flip the pancake”, taken from a recipe for
making pancakes: In order to perform the action successfully,
a robot needs for instance to decide which utensil to use

Flip the pancake around.

Flip it with a spatula.

There is a spatula. 
There is a tongs.
What flips a pancake?

Fig. 1. Representation of a disambiguation interaction

(e.g. a spatula), where to hold it (e.g. at its handle) and what
part of it to put underneath the pancake (e.g. the blade),
and where to flip it from (e.g. the burner). Current research
in cognitive robotics [4] aims to build action verb-specific
knowledge bases that fill these knowledge gaps and enables
a robot to infer the information which is needed in order
to perform a particular activity, based on what is given in a
naturalistic action specification.

However, such inference might be insufficient to formulate
action specification and require the robot to fall back on
human assistance. As an example, consider a situation where
the robot is asked to flip a pancake, but the knowledge base
does not contain sufficient information about what instrument
is to be used (e.g. it has no strong preference for a spatula
over barbecue tongs). In such a case, the robot has to
explicitly ask a human for instrument clarification. Fig. 1
illustrates such a situation. Taxonomical and compositional
relationships or object role understanding are only some of
the missing elements that could potentially require clarifica-
tion.

In this work, we present an implementation of a novel
approach to autonomously identify and verbalize such absent
information in a knowledge base, in order to enable a robot
to actively enhance its knowledge about actions and objects
by stepping into dialog with humans.

The contribution of this paper, within the artificial cogni-
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tion domain, is the making use of CNL as mean of language
generation: we use CNL as output language of our doubt
verbalization procedure, where doubt is intended as the
non autonomously removable uncertainty related to objects
involved in the action. Such situation then requires human
intervention for appropriate translation to action plans. Our
contribution lies in the conceptualization and implementation
of the doubt case classification, the discourse abstraction of
the robot reply and the verbalization procedure of the latter.

The remainder of this paper presents a description of the
adopted technologies (PRAC, ACE, DRS); an explanation
of how the claims are related to the state of the art; an
explanation of the implemented language generation module;
a system evaluation and an ending summary comprising
results, current limitations and future perspectives.

II. ADOPTED TECHNOLOGIES

Before explaining the details of the dialog-based disam-
biguation, we now describe the adopted technologies we
make use of as source of inferred information (PRAC), and
the human-readable target formalization (ACE), used also as
support to the verbalization procedure itself (ACE and DRS).

A. Probabilistic Robot Action Cores

Nyga et al. [2] introduced the concept of Probabilistic
Robot Action Cores (PRAC), which can be thought as
abstract, generic event patterns representing sets of inter- and
intra- conceptual relations that constitute an abstract event
type, assigning an action role to each entity that is affected
by the respective action verb. Formally, a PRAC is defined
as a conditional probability distribution:

P (R×A× C | v, �) . (1)

R is the set of all action roles
A is the set of all action verbs
C is the set of all class concepts
v is a taxonomy relation over C
� is a mereological relation over C

For terminology explanations we refer to [2]. As opposed
to most approaches towards understanding natural-language
instructions, which merely seek to understand what is given
by an instruction [5] [6], the PRAC concept is also able
to infer what is missing. It combines action-specific and
ontological world knowledge in a joint probabilistic first-
order representation, which allows to automatically find
generalizations from concrete event occurrences at an ap-
propriate level of abstraction. Specifically, PRAC models
are represented as a set of action roles (action parameters
defining relations among entities involved in an action) and
Markov Logic Networks (MLN), a knowledge representation
formalism that combines first-order logic and probability
theory [7]. Fig. 2 provides an example of the PRAC model
for the action core ’flipping’.

• Action Core: Flipping
• Definition: An Agent causes a Theme to move with

respect to a FixedLocation, generally with a certain
Periodicity, without undergoing unbounded trans-
lational motion or significant alteration of configu-
ration/shape.

• Action Roles:
– Theme: A physical entity that is participating in

non-translational motion.
– Instrument: An entity that is used to perform

the flipping action.

Fig. 2. “Flipping” Action Core, and an enumeration of its Action Role
definitions (partially adopted from FrameNet [8]). MLN formulas are not
listed for readability.

A PRAC defines a joint probability distribution over the
action roles according to Eq. 1, such that arbitrary parameter
slots, which are not given in an NL instruction, can be
inferred based on what has been stated explicitly in such
instruction.

B. Attempto Controlled English & Discourse Representation
Structures

Fuchs et al. [9] presented Attempto Controlled English
(ACE), a general purpose Controlled Natural Language
(CNL), i.e. a subset of standard English with restricted
lexicon, syntax and semantics, formally described by a small
set of construction rules and a controlled vocabulary. This
allows a text in CNL to be read naturally by any person that
knows the natural language it stemmed from, even if unaware
of the underlying formalizations, and is more readable than
other traditional formal languages [10].

Being a formal language, CNL can be proved by automatic
theorem proving software, translated into First Order Logic
or OWL ontology representations and also be paraphrased
into paratactic noun sentences. ACE provides linguistic
constructs that are usually present in natural languages,
such as countable nouns (e.g. ’robot’, ’pancake’), proper
names (’John’); universal, existential, generalized quanti-
fiers (’all’,’a’,’at least 2’); indefinite pronouns (’somebody’);
intransitive, mono- and di-transitive verbs (’sleep’, ’like’,
’give’); anaphoric references to noun phrases through definite
noun phrases and pronouns; composite sentences as com-
pounds of coordination, subordination, quantification, and
negation phrases. Fig. 3 provides an example of some of such
constructs in an ACE sentence, and also the ’paraphrased
understanding’, i.e. the breakdown of the latter into paratactic
noun phrases, making use of cross-sentence references (i.e.
X1, X2 in the example).

ACE: ”A robot who does not understand
asks a human that knows.”

There is a robot X1. There is a human X2. The human X2 knows. The
robot X1 asks the human X2. It is false that the robot X1 understands.

Fig. 3. example sentence in Attempto Controlled English, followed by the
’paraphrased understanding’ of such sentence via the use of ACE parser
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These paraphrase-obtained noun phrases have a two-way
relationship with Discourse Representation Structures (DRS)
[11], a format to encode information of multiple sentences,
preserving anaphoric references (i.e. discourse referents).
Fig. 4 provides an example of cross-sentence referencing and
universal quantification within the DRS formalism.

”Every robot is made by a human.”

X
robots(X)

x
x ∈ X

every
x

y,z
y = x

human(z)
z make y

Fig. 4. explanatory ACE sentence & related DRS example describing
cross-sentence references and universal quantification

III. RELATED WORK

In reference to filling missing information such as objects
or actions in verb-oriented formalizations, a large amount
of research has been done in order to provide databases of
conceptualizations of actions [8], [12], [13]. However, these
projects do not provide computational models for inference
and learning, and they do not address the problem of au-
tonomously identifying and closing such gaps of knowledge.

Regarding verbalization, ACE recently has been exploited
for uses such as Semantic Web Ontologies [14] and Mul-
tilingual semantic wikis [15], while this paper focuses on
the contributions of ACE in the artificial cognition domain.
Formalisms in artificial cognition oriented towards natural
language understanding do exploit grounding of words to
abstract objects [16], but do not comprise means of verbal
interaction for disambiguation purposes. According to what
is known to the authors to date, the ACE verbalization func-
tionality itself [14] has been used uniquely for verbalizing
OWL ontologies. While using the same means (i.e. ACE and
the DRS verbalizer, the latter being an intermediate phase
of the OWL-to-ACE verbalizer) we exploit the system for
verbalizing questions and ambiguity statements, in order to
verbalize a probabilistic knowledge formalism.

IV. CNL FOR TASK QUERYING

Given a Natural Language Instruction (NLI), the PRAC
system caters for action verb and roles understanding, infer-
ring missing candidate objects involved in the action. Unfor-
tunately, this operation can be partially satisfactory and some
residual doubt might require explicit verbal clarification, in
order to avoid that partially inferred information is translated
into action planning.

Fig. 5 represents the interaction that can occur until the
robotic assistant reaches a sufficient level of understanding.
Taxonomical, temporal, substitution, impossibility clarifica-
tions are only some of the disambiguation cases in which
an explicit verbal task querying is necessary from the robot

Human
Instruction

Select
Action

Infer Action
Roles

Roles
missing?

Translate to
Action Plan

classify
doubt

ask doubt
Human
Reply

no

yes

Fig. 5. A high-level flow chart of the dialog-based action role disambigua-
tion procedure.

to the human. The generation of natural-like language is
non-trivial given the scalability issues of linguistic factors
of the sentence construction (e.g. anaphora resolution, num-
ber/gender/particle concordance, subordinate sentence han-
dling, punctuation, verb conjugation). The latter requirements
have proven to be fulfilled by Attempto Controlled English
(ACE), now used as means of sentence construction. To do
so, we make use of the ACE system’s verbalization functions,
used to generate ACE sentences from ontological knowledge.
Specifically for an action-oriented representation, we present
our cognitive verbalization procedure, operated for each non-
assigned action role:

1) identification of the disambiguation cases (i.e. type of
doubt)

2) articulation of such doubt in a statement encapsulating
what was inferred, and an interrogative sentence

3) integration of the reply, assigning the previously miss-
ing action roles

A. Implementation

We now describe the implementation of the system
by defining a pseudocode (Algorithm 1) that incorporates
references for the sub-functions hereafter described (i.e.
C0,C1,C2,C3,C4,C5).

a) action role inference (C0,C1): C0 operates an in-
stantiation of the action template slots with the most likely
class concepts, derived from the joint probability distribution
of Eq. 1, while C1 retrieves the full enumeration of slots for
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Algorithm 1: Action Role Disambiguation via H-R
dialog

Data:
• PRAC, the joint probability distribution over all

used class concepts given ontology knowledge,
formally P (R×A× C | v, �) .

• ActionDB, a template database with all
ActionRoles for each ActionVerb

Result: satisfactory assignment of all the ActionRoles
required by the template for successful
translation into action planning.

begin
wait for NLI

C0 K ←− pracInference(NLI)
t←− sentence verb from K

C1 T ←− retrieveTemplateRoles(t, ActionDB)
U ←− T \K
while U 6= ∅ do

remove item u from list of U with minimum
syntactic relationship arity (known in template)

C2 doubtCase ←− doubtCaseIdentification(u)
C3 queryType ←− retrieve the grammatical type

related to the missing role u
sDrsT ←− pullDrsCase(doubtCase)
qDrsT ←− pullDrsCase(queryType)
sParam, qParam ←− inferred or known
contextual information necessary for the
grounding of specific templates of statement
and question
sDrsGnd,qDrsGnd ←− grounding of
sDrsT and qDrsT , via syntactic substitution
of sParam and qParam, respectively.

C4 aceS ←− verbalizeDRStoACE(sDrsGnd)
aceQ ←− verbalizeDRStoACE(qDrsGnd)
output aceS
output aceQ
wait for reply

C5 N ←− pracInference(reply)
K ←− K ∪N
U ←− T \K

comparison reasons. A lack of assignment to an action role
by C0 can be due to the impossibility of defining a likely
candidate (all probability assignments are below a threshold),
the presence of manifold candidates (probability assignments
are too close), or the optimal candidate is not available in
context. For a more formal and in-depth description of such
process we refer to [2].

b) case identification (C2): is operated when a role slot
stated in our action core template has not yet been assigned
for the previously described reasons. Case identification is
performed via threshold evaluation of probability values of
the most likely concept candidates for the missing role.

More formally, let fstLikely be:

argmaxP (neededRole | knownRoles,KB (v,�)). (2)

We then can describe our selection procedure as:

if P (fstLikely) < possibilityThreshold then
return “Impossibility”

if P (fstLikely) < P (sndLikely) − proxThreshold
then

return ”Two-choices”
...
return ”None”

Such abstract cases are represented in Discourse Rep-
resentation Structure (DRS) templates that also comprise
explanatory information.

TWO-CHOICES:
query case: doubt between two plausible objects
ACE template: There is a X1, there is a X2.
drs: drs([A,B],[object(A,X1,countable,na,eq,1)-1/4,
object(B,X2,countable,na,eq,1)-1/9])
dependencies: PARAM1-ext, PARAM2-ext; X1, X2

Fig. 6. DRS template of a twofold doubt choice for a role assignment

Fig. 6 provides an example for such template. The expla-
nation of the various fields is the following:

• query case is a high-level descriptive sentence of the
case

• ACE template present only for explanatory reasons, is a
sentence in ACE that represents, still in a template form,
what the output would look like after verbalization

• drs is the uninstantiated discourse representation of
ACE template: the markers (in the example, X1, X2)
will be syntactically substituted with PRAC inferred
information upon template grounding

• dependencies defines for retrieval and substitution pur-
poses, the type of parameters that are needed to perform
grounding, and their corresponding marker in the tem-
plate. Such parameters have syntactic relationships with
other roles involved in the action (described in C3)
c) typed dependency parsing (C3): Together with a

statement of the doubt case identification that encapsulates
contextual information, a specific object query will also be
verbalized in the form of a question. All template action roles
have a 2-way relationship with a grammatical type within the
scope of the action. These types are abstracted in DRS cases
(same as to the DRS modeling described in C2, e.g. in Fig.
8), that need to be retrievable given the missing action role.

The knowledge regarding the association between the
action roles and the grammatical type is provided by a con-
trolled template, an ACE sentence that comprises all unin-
stantiated action roles in a possible syntactic configuration,
built upon PRAC template model construction (an abstraction
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for all instances of that action verb, e.g. ’flipping’). Fig. 7
provides an example of such modeling.

The INSTRUMENT

det

nsubj

FLIPS

dobj

prep from

the
det
THEME from FIXEDLOCATION.

Fig. 7. Controlled template example for ActionVerb ’flipping’ (in red), and
the typed dependencies among the words of such sentence (in grey)

The grammatical relationships in such a CNL sentence
provide a formal understanding of the language-explicit
relationships between the entities involved in the action.
The relationships and the type of the dependencies from the
latter are obtained by processing the sentence with a typed
dependency parser (for our implementation, the Stanford
Parser [17], for which we also refer to for type clarification).

INSTRUMENTAL:
query case: preposition of instrument
template: What X1 the X2?
drs: drs([],[question(drs([A,B,C],[query(A,what)-1/1,
object(C,X2,countable,na,eq,1)-1/4,
predicate(B,X1,A,C)-1/2]))])
dependencies: NSUBJ-left, NSUBJ-right; X1, X2

Fig. 8. DRS template of an ’instrument’ object query

d) sentence construction (C4): is to provide a grammat-
ical structure for the grounded discourse abstractions of the
case identification statement and the object query question.
This is implemented by using the ACE verbalizer functions,
providing grounded DRS instances as a formal parameter.

The approach of verbalization of two phrases, namely
doubt statement and object question, has been chosen to
provide the human with a better understanding of both the
uncertainty (e.g. what instrument should be used) and of what
has been inferred (e.g. spatula and tongs are the most likely
candidates).

e) reply integration (C5): is performed by making use
of the previously described action role inference routine on
the natural language reply. After retrieving the new action
role assignments, we will substitute in the main instance
only the newly identified action roles that were previously
missing. The pipeline of reasoning is shown with an example
in Fig. 9.

V. EVALUATION

As performance measures we take into consideration the
natural likeness, the morphosyntactic correctness and the
ability to convey the wanted meaning of the CNL output
of our verbalizer system.

We operated our evaluation based on two action cores
(i.e. Flipping, Filling) that comprised full trained models for

P (isa(i, Spatula) | action_role(p, Theme),

                             isa(p, Pancake),

                             action_role(i, Instrument)) = 0.5

P (isa(i, Tongs)    | action_role(p, Theme),

                             isa(p, Pancake),

                             action_role(i, Instrument)) = 0.5

Flip

       

Flip

"Flip the pancake."
action_core(Flipping)

action_role(p, Theme)

isa(p, Pancake)
PRAC

Ambiguity between two plausible objects:

Clarification needed

PRAC

DRS

"There is a spatula.

There is a tongs.

What flips the pancake?"

"Use a spatula." PRAC

action_core(Flipping)

action_role(p, Theme)

isa(p, Pancake)

action_role(i, Instrument)

isa(i, Spatula)

Fig. 9. Reasoning pipeline of a possible instance of disambiguation
interaction

PRAC inference in order to verify full pipeline evaluation
(example in Fig. 9), and we made use of various other
arbitrary NLI sentences to verify correct typed dependency
parsing, assignment and grounding of the doubt discourse
representations. For the tested domain, the disambiguation
verbalization outputs were intelligible and conveyed the
meaning, but were not perfectly natural given the lack of the
use of modal verbs (i.e. ”what flips the pancake?” instead
of ”what can flip the pancake?”). An evaluated test instance
and the related pipeline information is illustrated in Fig. 9.

Given that the verbalizer system is purely a PRAC and
DRS based syntactical manipulator, we can assume scal-
ability of our system within the running assumptions and
performance bounds of the underlying systems [2] [18].

According to our evaluation, orthography of wording
remains intact from NLI to ACE output (the latter partially
exploits the same wording), as long as the verbalizer makes
use of words that are part of the running ACE system’s
vocabulary (that can be modified dynamically), otherwise the
ACE system will add explicit syntactic tags to highlight the
nature of the Part-Of-Speech of such words.

No difference has been observed when making use of
action cores based on intransitive, mono- and di-transitive
verbs, since the DRS disambiguation cases parameters tar-
get typed dependencies that differentiate among direct and
indirect objects [17]. Regarding the natural likeness of such
sentences, readability studies of ACE have already been
undertaken [10].

Regarding the potential ability of conveying the meaning
of the doubt given the PRAC abstraction, it is up to who
manually constructs the DRS templates, aligned to an ACE
output, to be able to exploit the expressiveness of the ACE
rules, and will also be constrained by the latter.

VI. OTHER USES OF CNL
Future work can exploit CNL in the artificial cognition

context differently, namely by using CNL as serialization of
the action oriented formalism, but with the use of semanti-
cally unambiguous nouns, therefore with fully deterministic
denotations.
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Specifically for the formalization of a PRAC model,
be it grounded or abstract, we require a format that can
serialize an instance or generate the PRAC model template:
that will comprise all generative information, namely all
roles involved in the action, and data that can create the
MLN formulas that evaluate the probability of all possible
grammatical types the action roles can be involved in.

We hypothesize that this can be achieved by defining the
action roles as nouns in a Controlled Natural Language state-
ment, for human-readability and for preserving grammatical
relationships between objects; furthermore we add explicit
semantic tags to maintain information regarding semantic
disambiguation of objects. An implementation is potentially
possible via the use of ACE and semantic tags from WordNet
[19]. Fig. 10 provides an example. Any proof of concept of
such hypothesis is left as future work.

The AGENT.n.06 FLIPS.v.08 the THEME.n.01 from
LOCATION.n.01 with an INSTRUMENT.n.01.

Fig. 10. example of a Controlled Natural Language statement, comprising
nouns with semantic tags for action-oriented formalism serialization

VII. RESULTS, DISCUSSIONS AND CONCLUSIONS

This paper brings attention to possible uses of Controlled
Natural Languages (CNL) in the artificial cognition domain.
While already proven as powerful formalism of representa-
tion and reasoning for the semantic web [14], our claim is
that novel uses of CNL are possible for robotic assistants,
specifically as robot-human interface. We have proven via a
formalization and a practical implementation that CNL can
be exploited as means for sentence construction and target
language of verbalization procedures.

However, even if discourse representation is an easier
instrument for achieving knowledge engineering, CNL con-
struction is not always straightforward [20]. In fact, the DRS
construction of the disambiguation cases has to account for
the ACE construction rules (that can present expressiveness
limitations) and the asymmetry of what is accepted as
correct ACE statement and what can be verbalized (e.g.
modals). The verbalizer system, being purely a DRS and
PRAC based syntactical manipulator, is constrained by the
current implemented features of these and presents similar
limitations. This is visible since the verbalization outputs are
readable but not perfectly natural-like sentences, and can
present scalability issues given by improper PRAC object
inference. With the expansion of the expressiveness set of
ACE and DRS, future work will aim towards understanding
how to make use of such abstractions in order to provide
robotic assistants with more language constructs and modal-
ities of speech. Further research will be dedicated to the
consolidation of the presented proof of concept, and will
focus on the interaction dialogue in order to enable further
learning via human-robot verbal interaction capabilities.
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