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Fig. 3. Example joint torque values during CMP learning and execution. Graphs in the left column show different torque components while learning
CMPs, i.e., corresponding torque learning, during a pick and place task of an object with mass of 0.5 and 4.5 kg (24–25). While the thick black
line denotes the complete joint’s measured torque τm = τu , blue and green represent its components, the torques contributed by Kuka’s own
dynamical model τdyn = fdynam ic (q, q̇, q̈) and the learned and stored feedback torque τx = τfb , respectively. Graphs in the right column show
example joint’s torque components during CMP execution with high stiffness settings ks = 1000 N · m/rad and varying object masses (3). Again,
the thick black line represents complete torque of the example joint τu and the blue and green line torques contributed from Kuka’s own dynamical
model τdyn = fdynam ic (q, q̇, q̈) and the feedback torque contributed by the robot’s controller τfb . The dashed red line shows additional feedforward
toque encoded in the CMP τx . It can be observed that the contribution from the robots controller drops significantly during CMP execution. This
enables us to lower the stiffness, i.e., the feedback gain, and compliantly move the robot while maintaining high tracking accuracy (without the need
for task-specific dynamical models).

Fig. 4. Robot colliding with an object with different stiffness settings and control approaches. In the first series of four images, the robot moved in
a stiff manner (ks = 1000 N · m/rad). The second set of images shows a collision while executing a compliant movement (ks = 50 N · m/rad). Both
of the movements were executed while using a standard closed-loop control. The last set of images shows the collision while moving in a compliant
manner using CMPs, given by (3), where the stiffness values were set to ks = 50 N · m/rad.

The previously obtained set of CMPs (41) was used for gener-
alization over a 1-D query, i.e., a varying object mass cs (40). As
described in Section IV, statistical methods were used to train
Gaussian process regression, which was then used to calculate
appropriate CMPs. The generalized CMPs could move an object
with arbitrary mass within the training space defined by example
set (41). New, generalized CMPs were executed for nine differ-
ent queries, covering the demonstrated as well as in-between
weights. For each query, the task was executed with eight dif-
ferent stiffness settings. Fig. 6 compares the maximum tracking
errors em of the generalized CMPs to the maximum tracking
errors em obtained when executing the originally demonstrated
CMPs. We can observe a slight, but not statistically significant
increase in the tracking error at the lower stiffness values, i.e.,

when the system is more susceptible to inaccuracies in general-
ized torque signals.

The second part of this section focuses on CMPs general-
ized over a 2-D query and their tracking accuracy w.r.t. query
points. Throughout this experiment, a stiffness setting of ks =
50 N · m/rad was used. In addition to varying the object mass,
the final robot position was also changing. The task was to move
the hand weight to different final positions. The queries were
defined as

c = [cg , cm ]T (44)

where cg denotes the final, i.e., goal position varying in height
and cm denotes the varying mass of the object. First, the motion
trajectories were obtained by kinesthetically guiding the robot
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Fig. 5. Robot colliding with an object while using different stiffness set-
tings and control approaches. The graphs present collision trajectories
and forces under two different stiffness settings (ks = 1000 N · m/rad and
ks = 50 N · m/rad) and with two different control approaches (Mrobot and
CMP). Blue trajectories show the performance of standard control with
high gains, red trajectories the performance of standard low-gain control,
and green trajectories the performance of CMPs. The top graph shows
position errors, while the second one shows TCP forces in the z axis.
The bottom one shows robot’s actual task space position in the signifi-
cant dimension, i.e., the vertical z axis. In the bottom graph the desired
trajectory is denoted by a dashed line, while the obstacle starts at 0 m.

for each example query cg . Six example goal positions were
used, varying for approximately 45 mm in height. Each of the
six example motion trajectories

Qx = {q̃xj , cgj}6
j=1 (45)

was tracked five times with a robot using high-gain feedback
controller at varying mass queries cm . The object mass varied
by 1 kg and covered the range from 0.5 to 4.5 kg. Altogether, 30
example pairs of motion trajectories and corresponding torques
{q̃x , τ̃ x} were obtained, covering all combinations of query
points [cg , cm ]. By encoding them as CMPs, a set of 30 example
CMPs was obtained

HCMP
x = {wq k , gqk ,wτ k , υk , ck}, k = 1, . . . , 30. (46)

Example CMPs were exploited as described in Section IV
to learn the generalization function (35) by Gaussian process
regression, which was then used to calculate new CMPs. The
generalized CMPs can compliantly move the object of arbitrary
mass to an arbitrary goal height within the training space defined
by example query points.

In order to evaluate the generalization of discrete compliant
tasks, we executed 99 compliant pick-and-place movements to

Fig. 6. Mean and standard deviation of discrete task’s maximum error
em . the top line shows the mean and standard deviation while executing
CMPs generalized over a one dimension query (gCMP). The bottom
line, showing the maximal mean and standard deviation while executing
learned CMPs (CMP), was gained in the previous experiment (see Fig. 2)
and is included for comparison.

different positions and with varying masses. These new CMPs
covered the whole training space, including 30 training and 69
new query points. The goal height varied by a step of 22.5 mm,
while the object mass was changed in steps of 0.5 kg. Example
executions of generalized CMPs can be seen in the accompany-
ing video.

For each task execution, maximum error em was calculated
using (43). Table II shows the maximum errors for each gen-
eralized CMP. Results are also shown in Fig. 7 and in the ac-
companying video. Note that the tracking error is slightly larger
when the mass of the object increases. This is to be expected, as
the system is more sensitive to the torque error contributed by
inaccurate generalization when the hand weight is heavy.

We calculated the mean and standard deviation of all these
99 maximum tracking errors em

me = 18.2(4.4) mm. (47)

If these values are compared to errors presented in previous
evaluation scenarios, we can note that the errors resulting from
generalized CMPs do not rise significantly compared to errors
arising from CMPs directly learned from one of the example
trajectories (see Table I) or generalized CMPs using a 1-D
query . This small rise in the tracking error can be attributed to
errors introduced through corresponding torques by statistical
generalization.

D. Periodic CMPs

In the last scenario, the proposed algorithm was evaluated on a
task where the robot was holding a handle of a height-adjustable
table as shown in Fig. 8. In order to gain a proper inverse
dynamical model fdynamic(q, q̇, q̈) analytically, the table would
need to be mathematically modeled. Due to the structure of
the table, this would be a complex and time consuming task.
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TABLE II
MAXIMUM ERRORS FOR GENERALIZED CMPS UNDER VARYING QUERIES

Final position height cq [mm]

0 22.5 44.7 67.2 89.2 111.7 133.7 156.2 179.2 201.7 224.4

Object 0.5 13.4 15.9 13.1 20.3 15.2 15.5 15.3 16.1 10.4 10.8 10.5
1 14.1 16.7 14.2 18.7 13.4 13.4 15.2 17.3 15.6 16.9 14.7

1.5 16.9 17.5 16.6 18.9 14.1 16.8 15.3 17 16.2 19.2 17.5
mass 2 15.5 16.3 14.8 17.6 13.6 13.5 12.6 13.4 12.6 18.7 12.1

2.5 14.3 15.1 15.2 18.6 12.5 13.9 12.8 16.5 14.7 21.2 18
3 16.9 16.2 16.7 23.9 14.9 17.4 13.9 23.2 22.2 28.6 19.6

cm [kg] 3.5 18.8 22.7 22.2 21.2 19.3 21.9 21.2 19.1 20.4 21.9 20.4
4 22.3 27.2 24.4 20.6 22 23.1 20.9 19.7 20.1 20 24

4.5 26.7 30.8 31.5 24.3 23.9 23.3 20.2 22.3 18.9 25.7 25.2

All error values are in millimeters.

Fig. 7. Maximum errors em that resulted from executing generalized
CMPs computed at different 2-D queries.

Instead, we used the proposed approach to gain the task-specific
dynamics, i.e., appropriate torques for each task variation. The
variations in the task of turning the handle were defined by two
queries

c = [ch , cω ]T . (48)

The first query ch defines the height of the table, and the sec-
ond cω defines the frequency of rotation. The example motion
trajectories

Qx = {q̃xj , chj}5
j=1 (49)

were obtained by kinesthetic guiding at example table heights
ch , varying by 80 mm. We recorded only five example trajec-
tories, which were then executed by a robot at five different
frequencies cω , ranging from 0.4 to 2 rad/s, using a high-gain

Fig. 8. Experimental setup for periodic tasks.

feedback controller. This resulted in 25 pairs of motion trajecto-
ries and corresponding torques {q̃x , τ̃ x}, obtained by executing
variations of recorded motions demonstrated by a human. They
cover all combinations of example query points [ch , cω ]. In this
way, we obtained an example set of 25 periodic CMPs

HCMP
x = {wq k , gqk ,wτ k , υk , ck}, k = 1, . . . , 25. (50)

This training data was used to estimate the generalization
function (35) using Gaussian process regression. Once the ap-
propriate hyperparameters were obtained, the robot was able to
compliantly turn the handle at arbitrary table height and fre-
quency throughout the whole training area, while calculating
the appropriate CMPs online. To show that the system can cal-
culate the CMPs in real time, the frequency query was defined
as a saw-like trajectory, while the changing table height was
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Fig. 9. Top and middle plot show two example joint and torque trajectories, respectively (example second joint). The bottom plot shows both
queries throughout the experiment.

Fig. 10. Task space trajectory in two crucial dimensions (plane of
rotation) as a function of time.

estimated by vision. Note that the height of the center of rota-
tion of the handle changes while the handle is rotated. This is
clearly seen in the last part of the accompanying video.

The results are shown in Fig. 9. It is evident that the proposed
system adapts to both queries smoothly and continuously.

Note that the DMP frequency parameter only allows
frequency adaptation for motion trajectories. Corresponding
torque signals are usually too complex to be modified by a single
parameter. However, with the proposed statistical approach,
they can by modified appropriately online. Another important
aspect is the resulting task space trajectory, which is shown in
Fig. 10, where x and z coordinates (plane of rotation) are shown
as the function of time. Here, we can see the adaptation of CMPs
to the changes of task descriptors, i.e., the height of the table and
the frequency of turning. The results are also shown in the video.

VI. DISCUSSION

The paper presents and evaluates the new concept of CMPs
and the accompanying techniques for their execution, learning,
and generalization. The proposed approach combines the ad-
vantages of stiff movements (high tracking accuracy) while ex-
hibiting low contact forces of compliant movements without the
need for task specific dynamic models. The experiments showed
CMPs are simply and promptly applied to various tasks. Only a
few human demonstrations are needed to successfully execute
a dynamically varying discrete or period task in a compliant
manner.
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While the low number of needed human demonstrations and
no need for experts make CMPs suited for service tasks in home
environments, the approach is primarily intended for industrial
applications. Small and medium enterprises (SMEs), adapting
to the current market, handle ever smaller batches of more di-
verse products. Because of long setup times and the need for
programming experts, a standard robot cell is an impractical and
financially unsound solution for SMEs. Adaptability of CMPs
eliminates these shortcomings and makes the use of robots vi-
able for small batches of varying products. For example, a pick
and place task is quite common in an industrial setting. A shared
workspace and objects of varying mass and size typically re-
quire long setup times for each new product. If we have a shared
workspace and objects of varying mass, a long setup time would
be needed for each new object when using standard approaches.
As was shown in our experiments, this can be easily solved with
CMPs. Another example industrial task, similar to the selected
periodic evaluation task, is turning of an object in assembly. Fur-
thermore, the approach is applicable for future service robots,
similar to valve turning in the recent DARPA challenge [57]. As
the initial demonstration for each new product can be quickly
done by nonexperts, high contact forces due to product abnor-
malities and errors in positions is avoided as the robot exhibits
high compliance.

Compliant behavior would usually be achieved through high
precision dynamical models describing each specific task. With
the rising complexity of humanoid robots, accurate dynamic
models also become more complex. Real physical systems
include a variety of unknown nonlinearities, such as friction,
gearboxes, elastic, and pneumatic elements, etc. These aspects
can degrade the dynamical model which consequently effects
the tracking accuracy [48]. Tracking errors can be mitigated
with high feedback gains, but that in turn raises stiffness and
unforeseen impact forces. Even more critically than the afore-
mentioned issues that can degrade the accuracy of dynamical
models, tasks can also introduce complex dynamics, which
is hard or even impossible to model analytically. Moreover,
these models are task specific, hence, each new task requires a
different dynamical model. The periodic task of handle turning
presented in this paper is an example of a complex, hard to
model, dynamic task. With this in mind, the presented CMPs
are an alternative to a standard approach using mathematically
defined dynamical models. The proposed approach can take into
account the aspects of the robot and task dynamics that were not
considered when specifying the mathematical dynamical model.

In the second step of the proposed approach, the trajectories
are executed with high-gain feedback loop, which enforces task-
specific dynamics. Note here that we assume that the robot is
accurately tracking the desired trajectory. The executed torque
profiles are recorded and used for training TPs. The combination
of TP and DMP defines a CMP. While the proposed approach
does not require prior dynamical model, such model can be used
if available. In our experiments, Kuka LWR’s own dynamical
model was available, but the CMP still mitigated any model
inaccuracies and provided the unmodeled aspects of the task
dynamics. In essence, learned TPs are used to compensate for
dynamic model errors and task-specific interaction forces.

The stiff behavior when learning task-specific dynamics in
the second step requires a controlled environment to prevent
damage to the robot. Instead of executing the trajectory in a stiff
manner, task specific dynamics could alternatively be gained
by reinforcement learning [58], [59]. This is, however, a much
lengthier process than the approach proposed in this paper.

While a rigorous analysis of the stability of generalized CMPs
is beyond the scope of this paper and would also not be general
but task dependent, we provided an intuitive stability analysis
in Section IV.A. As long as the task descriptors remain within
the training space, the generalized CMPs smoothly transition
between the demonstrated CMPs, which are assumed to be sta-
ble. It is therefore intuitive that the generalized CMPs are stable
as well. In our experiments, the generalized CMPs were always
stable unless extreme perturbations were applied to the robot.
The development of an additional adaptive controller, possibly
combined with DMP phase stopping techniques [60], will be
addressed in our future work.

Another approach of ensuring required tracking accuracy is
through variable impedance control [23]–[25]. While variable
impedance controllers—just as our approach—vary the gain,
the core of their approach is in essence quite different. This field
of research mainly focuses on achieving desired dynamic be-
havior by adjusting feedback gains to higher values when neces-
sary. While a (imperfect) robot’s dynamical model is assumed,
gain schedules, i.e., stiffness setting trajectories, are learned
[23], [24]. On the other hand, we focus on achieving compli-
ance throughout the task and simply reduce the gain—to a value
we have statistically determined to show no significant change in
the behavior. While there are similarities between our study and
the study being done in the field of variable impedance control,
our paper focuses on learning task-specific, i.e., corresponding
feedforward torques while minimizing stiffness to a minimum
throughout the movement.

In order to avoid CMP demonstration for each task variant, we
proposed to use statistical techniques. They can generalize a set
of example CMPs to new task variants, which proves useful if a
robot needs to execute a similar task several times under varying
conditions, e.g., everyday tasks in domestic settings. In general,
task descriptors/queries are perceived by a sensory system both
during learning and during task execution. If there are any errors
in the sensor readings, they do not affect the performance of
the system as long as they are the same in both phases. They
are included in the database when learning and automatically
compensate themselves when the task is executed. But if the
sensors readings vary, the errors will not be compensated and
the task will fail. This is the case for any learning approach
as well as for standard control approaches that use analytically
defined dynamical models.

Our evaluation showed the viability of the proposed ap-
proach. The results comparing CMPs to standard approaches
at various stiffness settings show the viability of CMPs as the
tracking accuracy was higher compared to standard approaches.
The magnitude of error stayed in the same area even at low
stiffness values. Evaluation also showed that while colliding
with an obstacle, CMPs produce low impact forces of compliant
movements, while at the same time exhibiting high tracking
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accuracy characteristic for stiff motion resulting from the
classic high-gain feedback control.

Generalized CMPs were also evaluated. By using Gaussian
process regression, we were able to generalize CMPs to any set
of queries within the training space. By evaluating the approach
on a discrete pick-and-place task we showed that the tracking
error introduced by generalization remains small. In the experi-
ment involving periodic motion, a hard-to-model task of raising
a height-adjustable table was demonstrated. We showed that the
proposed approach was able to calculate the appropriate CMPs
in real time. While alternative generalization techniques to
Gaussian process regression might reduce the errors introduced
by the application of the technique originally proposed in [17],
many of them would not be able to adapt CMPs online due to
the significant rise in the calculation time [16].
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Miha Deniša received the Diploma degree in
electrical engineering from the University of
Ljubljana, Ljubljana, Slovenia, in 2010. He is cur-
rently working toward the Ph.D. degree at the
same institution.

He is a Researcher at the Humanoid and
Cognitive Robotics Lab, Department of Automat-
ics, Biocybernetics and Robotics, Jožef Stefan
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