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Learning Compliant Movement Primitives
Through Demonstration and
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Abstract—In this paper, we address the problem of si-
multaneously achieving low trajectory tracking errors and
compliant control without using explicit mathematical mod-
els of task dynamics. To achieve this goal, we propose a
new movement representation called compliant movement
primitives (CMPs), which encodes position trajectory and
associated torque profiles and can be learned from a single
user demonstration. With the proposed control framework,
the robot can remain compliant and consequently safe for
humans sharing its workspace, even if high trajectory track-
ing accuracy is required. We developed a statistical learn-
ing approach that can use a database of existing CMPs and
compute new ones, adapted for novel task variations. The
proposed approach was evaluated on a Kuka LWR-4 robot
performing 1) a discrete pick-and-place task with objects
of varying weight and 2) a periodic handle turning opera-
tion. The evaluation of the discrete task showed a 15-fold
decrease of the tracking error while exhibiting compliant
behavior compared to the standard feedback control ap-
proach. It also indicated no significant rise in the tracking
error while using generalized primitives computed by the
statistical learning method. With respect to unforeseen col-
lisions, the proposed approach resulted in a 75% drop of
contact forces compared to standard feedback control. The
periodic task demonstrated on-line use of the proposed ap-
proach to accomplish a task of handle turning.

Index Terms—Adaptive system, intelligent robots, learn-
ing system, robot control.

I. INTRODUCTION

PROGRAMMING by demonstration [1]–[5] is a widely
used approach for acquiring new sensorimotor knowledge

by observing humans performing a task. Example movements
can be recorded using optical or magnetic marker-based sys-
tems [6], [7], vision systems including stereo cameras [8] and
RGB-D cameras [9], [10]. A robot can also learn new tasks [11],
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force constrains [12], and compliance strategies [13] by being
physically guided by a human. A movement captured through
kinesthetic guiding has the advantage of already being adapted
to the robot kinematics and dynamics. If the trajectory is cap-
tured in joint space, the imitation also preserves the posture of
the robot when it is redundant with respect to the task.

While a single demonstration can be used to learn robot trajec-
tories, for example encoded by dynamic movement primitives
(DMPs) [14], [15], multiple demonstrations can be used as well
in combination with statistical approaches. Statistical learning
is used in order to synthesize an appropriate trajectory for a
new task within the training space from a set of recorded move-
ments [16]–[18]. Other representations of movement primitives
that can be used with multiple demonstrations include hidden
Markov models [19], Gaussian mixture models [20], [21], etc. A
sample set of trajectories was also used by [22]. They used it to
learn a skill manifold and with it generate trajectories modified
to novel constrains.

An important aspect that needs to be considered when using
robots in domestic settings or shared workspaces in industry
settings is safety. If the dynamic models of the robot and the task
are known, feedback gains can be adjusted to obtain the desirable
compliance or even to prescribe the desired dynamic behavior
of the mechanism [23]–[25]. However, in the case of imitation
learning, dynamic models, which include both the dynamics of
the robot and the dynamics of the task, are usually not known
and can not be easily learned from imitation. Since modeling
the task dynamics is usually a difficult and time consuming task,
this paper addresses the problem of how to obtain them through
autonomous learning and thereby avoid the need for an expert
to define them.

A possible way to achieve compliance is through contact de-
tection using an artificial tactile skin. Such skin can be realized
as a bumper-based hard shell [26] or as a soft tactile sensing ar-
ray [27]–[29]. Among the drawbacks of using the artificial skin
are high prices, contacts with areas that cannot be covered, and
the inherent sensor delay. Lately some work on contact detec-
tion was also done using alternative approaches, e. g., resonant
frequency tracking [30].

Robots can be made passively compliant by design [31]. Con-
tact forces can be mitigated by reducing the weight and hard-
ness of the robot structure [32]–[34]. Passive compliance can be
achieved through an advanced actuator design by implementing
elastic elements [35]. Elastic elements can also adapt to a given
task. They were extensively researched within the concept of
variable stiffness actuators [36]–[39].
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As an alternative to passive approaches, compliance can
be achieved also through active torque control strategies. By
comparing the actual torques and the required theoretical
torques, compliant robot behavior can be achieved [40]–[42].
The main problem with this approach is that besides having ac-
cess to actual torques through sensors, a correct dynamic model
for each task variation must be available in order to calculate
optimal torques for robot control. Models of the task dynamics
are often not available. As an alternative, different biologically
inspired methods were proposed for dynamic robot control. An
extensive review of such control mechanisms, from optimal
feedback control [43] to the forward models and predictive con-
trol [44], was published by Franklin and Wolpert [45].

The main result of this paper is a new concept of compliant
movement primitives (CMPs), which is suitable for robots with
active torque control. CMPs enable compliant and at the same
time accurate execution of various tasks without requiring ex-
plicit models of task dynamics. They can be easily learned from
user demonstrations. The inspiration for CMPs was derived from
the human ability to learn arbitrary dynamical tasks [46]. To sur-
pass the limited applicability of pure imitation, we extended the
basic approach with statistical generalization, thereby allowing
for variations in the task configuration. The viability of CMPs
was shown in two distinct experiments, applied for discrete and
periodic tasks. The discrete task, depicting pick-and-place, is
common for numerous industrial settings. With our approach, it
can be utilized in a shared human–robot environment and can
also be applied for variable parts, as the robot’s compliance can
account for minor deviations. The periodic experiment depicts
handle turning for a variable load and frequency. Such tasks are
common in robot-aided assembly. The experiments were per-
formed on the Kuka LWR-4 robot. Neither of the experiments
required explicit dynamical models, which can only be provided
by experts.

CMPs are gained by demonstration in a two-step learning
process:

1) The desired motion trajectory is demonstrated and en-
coded as a DMP.

2) The trajectory is executed on a robot while using a
high-gain feedback control. The actually executed
torque signals are recorded and then encoded as a linear
combination of radial basis functions, denoted here as a
Torque Primitive.

We denote the task-related position trajectory supplemented
with the corresponding torques as a CMP. Both components of
the CMP are used to execute a task. While the torque component
is used as a feedforward term, the position trajectory is used to
ensure stability in a low-gain feedback loop. This ensures that
low gains can be used for control and consequently the desired
task can be performed safely and in a compliant manner.

The second part of the paper tackles the learning of CMPs for
variations of the desired task. In unconstrained domains such
as home environments, people and consequently service robots
often need to perform variations of the same task. Quick adapt-
ability to different tasks and their variations is also becoming an
important aspect in industrial settings, as many enterprises are
customizing ever more products, leading to small batch size
production. In our approach, an example set of demonstrated

CMPs is generalized with statistical methods in order to compute
a new CMP suitable for the desired task variant inside the train-
ing space. By combining CMPs with statistical learning meth-
ods, the robot is able to learn and perform variations of the
(semantically) same task in a compliant manner, without the
need for experts to program complex movements and dynam-
ical models, thus allowing for faster modification of robotic
operations in assembly, making the process economically
viable.

In related work, Nguyen-Tuong and Peters [47] used local
Gaussian process regression for online dynamic model learn-
ing. This enabled them to improve the accuracy of the model
and avoid high feedback gains, usually needed to ensure accu-
rate trajectory tracking [48]. Unlike our approach, the method
of Nguyen-Tuong and Peters learns complete robot dynamic
models, hence, their approach requires the availability of much
more data than our approach, which learns only the task-specific
dynamics. With a similar goal in mind, iterative learning control
(ILC) [49] was utilized for torque control. Schwarz and Behnke
[50] used ILC to learn motor and friction models. Gautier et al.
[51] proposed an iterative learning identification and control
method for dynamic robot control.

The rest of the paper is structured as follows. The proposed
control framework is presented in Section II. The next section
defines CMPs and presents their learning. Section IV explains
the generalization of CMPs using statistical methods. Evaluation
is presented in Section V and the discussion is provided in the
last section.

II. CONTROL FRAMEWORK

Assuming that a robot consists of rigid bodies, the equations
of motion can be written as

H(q)q̈ + C(q, q̇) + g(q) + ε(q, q̇, q̈) = τ (1)

where q, q̇, and q̈ are the joint positions, velocities and accel-
erations, respectively, H(q) is the inertia matrix, C(q, q̇) are
the coriolis and centripetal forces, g(q) are the gravity forces,
and ε(q, q̇, q̈) are the nonlinearities which are not considered
in the rigid body dynamics, e.g., friction. We assume that the
robot’s inverse dynamic model given by (1) is known and denote
it as fdynamic(q, q̇, q̈). A possible control approach [31], [52]
for tracking the desired position qd using the inverse dynamic
model is defined as

τ u = K(qd − q) + D(q̇d − q̇) + fdynamic(q, q̇, q̈) (2)

where τ u is the commanded torque for joint specific impedance
control, D is the damping matrix, and K is the diagonal matrix
that determines the stiffness of the robot. If the diagonal ele-
ments of K are high, then the robot behavior is stiff. This also
implies better tracking accuracy of the desired joint trajectories
qd . By lowering the values of the matrix K, the robot becomes
less stiff, i.e., more compliant.

However, while using compliant behavior with imprecise
or/and incomplete inverse dynamic models tracking errors can
rise significantly, as the tracking error reduction of the compli-
ant controller is low. Therefore such a controller, referred to as
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standard control approach from here on out, cannot compensate
for any model imperfections.

To improve the tracking accuracy while maintaining compli-
ant robot behavior, we propose the following controller:

τ u = K(qd − q) + D(q̇d − q̇) + τ f + fdynamic(q, q̇, q̈)
(3)

where the τ f is an additional feedforward torque signal, which
compensates for the task-specific dynamics.

The task-specific dynamics, i.e., the dynamics which are task
dependent, and therefore, not included in the robot’s dynami-
cal model, can be obtained with mathematical modeling of the
task [47], [48]. However, mathematical modeling is a difficult
and time consuming problem that can only be performed by an
expert. Therefore, we propose an alternative solution where the
robot autonomously learns the proper task-specific dynamics τ f

in a controlled environment or under human supervision. Once
the task-specific dynamic is learned, the robot can accurately
execute the task while being compliant. Compliant behavior
implies lower impact forces in case of unexpected collisions.
Therefore, the robot can now safely work in unstructured envi-
ronments and interact with humans.

III. CMPS AND THEIR LEARNING

We define a compliant movement as a combination of de-
sired motion trajectories (joint positions) and corresponding
joint torque signals

h(t) = [qd(t), τ f (t)] (4)

where

qd(t) = [qd1(t), wqd2(t), . . . , qdP (t)]T , (5)

τ f (t) = [τd1(t), τd2(t), . . . , τdP (t)]T . (6)

Here P denotes the number of degrees of freedom (DOF). In
the proposed approach, motion trajectories qd are first obtained
by human demonstration and encoded as DMPs [14], [15]. The
corresponding torques τ f are obtained by executing the learned
task trajectories with a high-gain feedback controller, which
provides information to achieve the required tracking accuracy.
These task-specific torques are encoded as a linear combination
of radial basis functions. We denote them as torque primitives
(TPs). A pair of DMP and TP now describes a compliant move-
ment. We denote such a pair as a CMP.

A. Learning Motion Trajectories

Various techniques can be applied to capture human demon-
stration. In this paper, we use kinesthetic guiding to capture
example motion trajectories

qx(t) = [qx1(t), qx2(t), . . . , qxP (t)]T (7)

where subscript x denotes examples and P the number of DOF.
The complete robot position trajectory is then given as

q̃x = {qx(t1), qx(t2), . . . , qx(tT )} (8)

where T is the total number of captured samples throughout
a single demonstration. With multiple demonstrations, a set of

example motion trajectories in joint space is given as

Qx = {q̃xj , cqj}N
j=1 (9)

where N denotes the total number of captured examples q̃x .
Each example trajectory successfully accomplishes one varia-
tion of the task described through task parameters called queries
cq . Task parameters can describe a variety of things, e.g., ini-
tial position of a discrete movement in task space that varies
in a single dimension cq = xstart , final position of the dis-
crete movement in joints space, cq = [q1 , q2 , . . . , qP ]T , Carte-
sian mean position value of periodic motion in two dimensions,
cq = [px, py ]T , etc. We encode each example trajectory q̃x as a
DMP [15], [16].

For the sake of completeness, we provide a short overview of
the DMP theory [14], [15]. The equations below are valid for
a single DOF, and can be used in parallel for multiple DOFs.
A nonlinear system of differential equations defines a DMP for
discrete (point-to-point) and periodic movements

υż = αz (βz (g − y) − z) + f(s) (10)

υẏ = z (11)

where the linear part ensures the convergence of y to the desired
goal configuration g once f becomes equal to zero. The nonlin-
ear part f(s) modifies the shape of the movement and is defined
by a linear combination of Ld radial basis functions [53]

f(s) =
∑Ld

b=1 wqbψb(s)
∑Ld

b=1 ψb(s)
s. (12)

Here ψb denotes Gaussian basis functions

ψb(s) = exp(−db(s − cb)2) (13)

with centers at cb and widths db > 0. Note that f(s) is not
directly time dependent. Instead, a phase variable s with the
initial value s(0) = 1 is used

υṡ = −αss. (14)

The phase variable is useful in case of external perturbations and
is common across all DOFs. In our case, the phase is common
across the complete CMP, which in addition to a DMP also
includes a Torque Primitive (TP).

By defining appropriate constants αz , βz , υ > 0, and αs > 0,
the described system is guaranteed to converge to the desired
configuration g [15]. If not stated otherwise we used αz = 48,
βz = αz/4, αs = 2 and Ld = 30. These DMP parameters were
set empirically.

To acquire the target signal for learning, (10) and (11) are
rewritten as a second-order system

υ2 ÿ + αzυẏ − αzβz (g − y) = f(s). (15)

By substituting y with the example trajectory q̃xn of the nth joint
and its derivatives ˙̃qxn and ¨̃qxn , the target function is derived as

fni = υ2 q̈xn (ti) + αz q̇xn (ti) − αzβz (g − qxn (ti)),

i = 1, . . . , T (16)

where the goal value g is specified by the end value of ex-
ample trajectory qxn (tT ). The DMP is calculated by solving
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the overdetermined equation system (16) using regression tech-
niques [15], [16] for each joint trajectory.

Equations (12) and (13) hold for discrete movements. In case
of periodic movements, a linear combination of Gaussian func-
tions f(s) is replaced by a linear combination of periodic basis
functions [15] given by

f(φ) =
∑Lp

b=1 wqbΓb(φ)
∑Lp

b=1 Γb(φ)
r (17)

Γb(φ) = exp(hb(cos(φ − cb) − 1)) (18)

where r is the amplitude of the oscillator and hb > 0. In our
case, we used Lp = 30 and hb = 2.5Lp . By replacing υ with
υ = 1/Ω in (10) and (11), we obtain

ż = Ω(αz (βz (g − y) − z) + f(φ)) (19)

ẏ = Ωz. (20)

Here, the discrete phase s was replaced by periodic phase φ,
which is determined by the phase oscillator

φ̇ = Ω (21)

where Ω is the frequency of oscillations.
Encoding of the periodic trajectories is done in a similar way

as for discrete trajectories (15), (16), except that in (19), (21),
frequency of the movement Ω is needed. Ideally, Ω is determined
automatically from the data. Details on the automatic determi-
nation of frequency of periodic movements are provided in [54]
and [55].

B. Learning Corresponding Torque Signals

In order to obtain the corresponding task-specific torque sam-
ples

τ̃ x = {τ x(t1), τ x(t2), . . . , τ x(tT )} (22)

τ x(t) = [τx1(t), τx2(t), . . . , τxP (t)]T (23)

example movements q̃x , encoded as DMPs, are executed in a
controlled environment or under human supervision. For that a
standard control approach, i.e., a high-gain feedback controller

τ u = K(qx − q) + D(q̇x − q̇) + fdynamic(q, q̇, q̈) (24)

is used. The needed velocities q̇x are also provided by the DMP.
It should be noted here that in this step high values of K are
needed in order to ensure the required tracking accuracy. We also
assume the robot is capable of accurately tracking the desired
trajectory. At this stage, the task specific dynamical model is
being learned by recording torques provided by the controller.
If the values K are low and the dynamical model is imprecise
and/or does not incorporate current task dynamics, the controller
will not be able to track the desired trajectory qx and faulty
torques will be recorded. Task-specific torques τ x are gained
by subtracting the known robot’s dynamics fdynamic(q, q̇, q̈)
from actual measured torques τm at robot’s joints

τ x = τm − fdynamic(q, q̇, q̈). (25)

Here, we assume that the robot’s dynamic model is known and
the corresponding torques are used to mitigate its errors and

compensate for task-specific dynamics. If the robot’s model is
not known, the controller given by (3) changes to

τ u = K(qx − q) + D(q̇x − q̇) (26)

and the torques for learning would be defined as

τ x = τm (27)

which would now compensate for the task-specific dynamics
and the robot’s own dynamics.

Each demonstrated motion q̃x can be executed multiple times
under different task conditions cτ to gain compliant movement
trajectories, which have different corresponding task-specific
torques, but the same position trajectory. For example, a
position trajectory of the movement can be executed at varying
velocities and produce compliant movements with different
corresponding torques. Another example is moving objects of
varying mass cτ = m over the same position trajectory, i.e., the
corresponding torques differ for each different mass. Thus, we
need to obtain a set of example torque signals

T x = {τ̃ xk , cτ k}N M
k=1 (28)

where M is the number of times each of the N example motion
trajectory q̃xj was executed with varying conditions cτ .

A linear combination of basis functions is used to encode
task-specific torques τ̃ x as a TP. For discrete movement, the
torques for one DOF are given by

τx(s) =

⎧
⎪⎨

⎪⎩

∑Ld

b=1 wτ bψb(s)
∑Ld

b=1 ψb(s)
s ≥ sε

τx(sε) s < sε

(29)

where sε denotes the final value of the phase variable for the en-
coded learned torque signal. In this way, the final torque value is
maintained, even if CMPs are executed beyond the final learned
point. For periodic movements, the torques are given by

τx(φ) =
∑Lp

b=1 wτ bΓb(φ)
∑Lp

b=1 Γb(φ)
. (30)

As with (16), regression techniques are used in order to compute
the TPs τx(s) and τx(φ) by solving a simplified equation system:

fni = τxn (ti), i = 1, . . . , T. (31)

Through human demonstration and execution under varying
condition, we can gain a set of total NM example compliant
movements, i.e., pairs of motion trajectories and corresponding
torques

Hx = {{q̃x1 , τ̃ x1}, . . . , {q̃x1 , τ̃ xM },
{q̃x2 , τ̃ x(M +1)}, . . . , {q̃x2 , τ̃ x(2M )}, . . . ,
{q̃xN , τ̃ x((N −1)M +1)}, . . . , {q̃xN , τ̃ x(N M )}} (32)

which can be used to compliantly execute tasks under varying
conditions defined by query points

Cx = {[cq
T
1 , cτ

T
1 ]T , . . . , [cq

T
1 , cτ

T
M ]T ,

[cq
T
2 , cτ

T
M +1]

T , . . . , [cq
T
2 , cτ

T
2M ]T , . . . ,

[cq
T
N , cτ

T
(N −1)M +1]

T , . . . , [cq
T
j , cτ

T
N M ]T }. (33)
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By encoding motion trajectories as DMPs and corresponding
torque signals as TPs, we obtain a set of NM example CMPs

HCMP
x = {wq k , gqk ,wτ k , υk , ck}, k = 1, . . . , NM (34)

represented by DMP weights wq k and goals gqk , TP weights
wτ k , common durations of DMP and TP υk and query points
ck = [cq

T
j , cτ

T
k ]T .

IV. STATISTICAL GENERALIZATION OF CMPS

For most tasks, there is an infinite number of task variations,
hence each possible task variation cannot be learned in advance.
However, if the learned CMPs transition smoothly between each
other as a function of query points ck , statistical learning tech-
niques can be used to predict optimal movements for new query
points, i.e., task descriptors c. This allows for executing the task
at an arbitrary configuration as long as the task descriptor re-
mains within the training space. For example, statistically we
can compute the necessary torques to compliantly turn a handle
even for task configurations that were not directly demonstrated.

More formally, our goal is to learn a function

F HC M P
x

: c �−→ [wq
T , gT

q ,wτ
T , υ]T (35)

given the training data (34), with outputs being defined as
[wq

T
k , gT

qk ,wτ
T
k , υk ]T and inputs as ck . By the above definition,

F HC M P
x

(c) computes the appropriate CMP parameters at the
given task descriptor c. For each component function of the

vector valued function F HC M P
x

(c), we employ Gaussian pro-
cess regression [56] to estimate it from the training data.

Let r be one of the components of the output vectors
[wq

T , gT
q ,wτ

T , υ]T . For this one component, training data (34)
can be written as {rk , ck}N M

k=1 , where rk are now scalar valued
outputs. Let r = [r1 , . . . , rN M ]T be the vector combining all
the training outputs. Let’s also assume that we obtain a new
set of inputs c∗ = [c∗T1 , . . . , c∗TK ]T for which the correspond-
ing outputs r∗ = [r∗1 , . . . , r

∗
K ]T should be computed. Assuming

that the mean of training outputs {rk} is zero1, Gaussian process
regression can be applied to compute r∗ as follows:

r∗ = Σ (C∗,C) ·
[
Σ (C,C) + σ2

nI
]−1

r. (36)

Here C = {c1 , . . . , cN M }, C∗ = {c∗1 , . . . , c∗K }, σn is the noise
variance of the output data and

Σ({c1 , . . . , cK }, {c′1 , . . . , c′K ′ }) =

=

⎡

⎢
⎣

cov(c1 , c
′
1) . . . cov(c1 , c

′
K ′)

... . . .
...

cov(cK , c′1) . . . cov(cK , c′K ′)

⎤

⎥
⎦ (37)

cov(ci , c
′
j ) = σ2

f exp

(

−
‖ci − c′j‖2

2l2

)

(38)

where σf is the signal variance and l the characteristic length-
scale, i.e., roughly the distance that one has to move in the input

1In general, the mean r̄ = 1
N M

∑N M

k=1 rk is not equal to zero and should
be subtracted from the training data. r̄ should later be added to the estimated
output values (36).

space before the value of the output signal changes significantly.
σn , σf , and l are called hyperparameters and should be estimated
from the training data. This can be accomplished by maximizing
the following log marginal likelihood:

log (p(r|C, σl , σf , l)) = −1
2
rT [Σ(C,C) + σ2

nI]−1r

−1
2

log
(
det

[
Σ(C,C) + σ2

nI
])

− NM

2
log 2π. (39)

This optimization can be performed by any of the standard
nonlinear optimization routines.

The most computationally expensive part of Gaussian process
regression is the calculation of the hyperparameters {σn , σf , l},
which is done by minimizing (39), and the calculation of the in-
verse matrix [Σ(C,C) + σ2

nI]−1 . However, these calculations
can be done offline as they depend only on the training data
HCMP

x . Once the Gaussian processes have been trained for
each component function of the training set (34), new CMPs for
arbitrary queries c∗ can be calculated by simple matrix multi-
plications. This can easily be done in real time.

A. Stability of the Generalized CMPs

The basic assumption of our approach is that the reproduc-
tion of the demonstrated movements with a high-gain feedback
controller (24) is stable. For the execution of the generalized
movements, the original gains are reduced to achieve compli-
ance, which further diminishes the risk of the system becoming
unstable. Note also that in the case of discrete movements, the
feedforward term τx(s) from (29) tends to the value that main-
tains the robot at the final configuration at the end of the move-
ment. Thus, the output of the controller combines (24) with low
gains, and the final value of encoded τ̃ x , thereby ensuring that
the robot is stable at the end of the movement.

Generalization of CMPs with (35) results in feedforward
terms that are bounded and smoothly transition between the
feedforward terms obtained by high-gain feedback control,
which by our initial assumption all resulted in stable move-
ments. It is therefore intuitive that the generalized CMPs that
smoothly transition between them as the function of task de-
scriptors are stable as well. It should be noted, however, that a
rigorous proof would require us to make various assumptions
about the task and admissible perturbations. Such an analysis is
beyond the scope of this paper.

V. EVALUATION

To evaluate our approach, we used a Kuka LWR-4 arm with
a mounted BarrettHand BH8-280. Throughout the experiments,
CMPs consisted of joint trajectories and torques for all seven of
the robot’s DOF. Although the robot’s dynamical model is not
strictly necessary for the proposed approach, we made use of
the dynamical model fdynamic(q, q̇, q̈) as provided by Kuka.
The motivation behind our approach is to enable the robot to
first, learn those aspects of the robot’s dynamical model that
are not contained in fdynamic(q, q̇, q̈), and second, acquire
task-specific dynamical models that are often difficult or even
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TABLE I
MAXIMUM ERRORS FOR TASK EXECUTIONS USING DIFFERENT CONTROL APPROACHES UNDER VARYING STIFFNESS SETTINGS

Stiffness setting ks [N · m/rad]

10 25 50 125 250 500 1000 2000

Mro b o t m 1 138* 66.4 41.4 21.7 13.8 10.3 10.9 11.2
m 2 295* 188* 123* 59 34.3 17.9 9.57 5.24
m 3 313* 285* 171* 94.5* 52.6 29.2 15.6 8.62
m 4 335* 297* 232* 117* 75.7* 41.7 22.8 13
m 5 342* 290* 283* 149* 87.2* 50.8 28.2 16

mean 285 (83.8) 225 (99.4) 170 (93.8) 88.3 (49.6) 52.7 (29.9) 30 (16.6) 17.4 (7.94) 10.8 (4.11)
Mta sk m 1 95.9 42.8 24.1 10.2 7.15 6.68 6.41 6.39

m 2 93.5 44.3 25.7 11.1 7.43 6.88 6.55 6.37
m 3 142 59.9 34.2 17.4 10.1 7.45 6.82 6.51
m 4 101 49.5 29 16.6 10.3 7.15 6.57 6.4
m 5 162 71.2 40.3 20.2 12.2 7.92 7 6.62

mean 119 (31) 53.6 (11.9) 30.7 (6.64) 15.1 (4.3) 9.43 (2.11) 7.22 (0.49) 6.67 (0.235) 6.46 (0.103)
CMP m 1 41.9 16 9.1 9.14 10.5 11.1 11.5 11.6

m 2 37.7 15.9 7.76 2.61 2.28 2.82 3.14 3.35
m 3 31.9 13.2 7.22 3.53 2.85 3.01 3.47 3.48
m 4 40.9 13 6.52 3.73 4.8 5.7 6.1 6.19
m 5 27.4 19 12.9 12.2 11.3 11.5 11.4 11.5

mean 36 (6.18) 15.4 (2.45) 8.71 (2.54) 6.24 (4.19) 6.35 (4.28) 6.83 (4.24) 7.12 (4.12) 7.22 (4.1)

*Due to a high tracking error the execution of the pick and place task was unsuccessful. All error values are in millimeters.

impossible to specify. In this section, we show that the tracking
error of CMPs and generalized CMPs is comparable to standard
approaches that use mathematically defined dynamical models
in those rare cases when such models can be provided. Three
different approaches are compared: a standard control approach
(2) using the robot’s dynamical model (denoted by Mrobot); the
same control approach (2) using a dynamical model enhanced
with a task-specific point mass model at the top of the robot
(denoted by Mtask ); and the proposed control approach (3)
using CMPs (denoted by CMP).

Evaluation can be divided into four parts: 1) Compliant move-
ment evaluation was done at various stiffness settings by observ-
ing tracking errors while executing a simple pick and place task
using different control approaches; 2) collision setup was used to
compare robot behavior to unforeseen impacts while using dif-
ferent stiffness settings and control strategies; 3) discrete CMPs
and their generalization over one- and two-dimensional queries
was evaluated w.r.t. tracking errors on a pick and place scenario;
and 4) Periodic CMPs and generalized CMPs were evaluated us-
ing a hard-to-model task of raising a height-adjustable table by
rotating its handle.

A. Compliant Movement Evaluation

CMPs were evaluated by comparing the three approaches:
Mrobot , Mtask , and CMP. Experimental setup can be seen in
Fig. 1. By moving an object of varying weight, dynamics of
the task change and the inverse dynamic model would need to
be adapted. We avoided doing that mathematically by using the
proposed approach.

A movement which resulted in the hand weight being moved
from the initial position to the final position was demonstrated
by kinesthetic guiding. The movement was then executed five
times using feedback controller (24) with high gains, which
ensures high tracking accuracy. For each repetition, the mass of

Fig. 1. Experimental setup for the discrete pick and place task. The
robot picks up the hand-weight on the right, carries it to the left, and
releases it.

the object was changed

cs = {m1 ,m2 ,m3 ,m4 ,m5} = {0.5, 1.5, 2.5, 3.5, 4.5} kg
(40)

and different corresponding torques were obtained. As the Kuka
robot has torque sensors in each joint, actual joint torques were
recorded at this step. The motion trajectories and corresponding
torques were encoded as CMPs

HCMP
s = {wq k , gqk ,wτ k , υk , ck}, k = 1, . . . , 5. (41)

All learned CMPs were executed while using eight different
stiffness settings

ks = {10, 25, 50, 125, 250, 500, 1000, 2000} Nm/rad (42)

where ks are the diagonal elements of the stiffness matrix K =
ksI, which is used in (3) and (24). These values were selected
in order to cover a wide specter of compliance exhibited by the
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Fig. 2. Mean and standard deviation of task’s maximum error em . The
bottom line shows the mean and standard deviation for the proposed
system with task-specific feedforward torques (CMP). The top line shows
the mean and standard deviation for the standard control approach using
Kuka’s dynamical model (Mrobot ), while the middle line shows errors
obtained while using a task specific model (Mtask ).

Kuka LWR-4 robot and are used commonly for all DOFs. The
maximum error of each task execution was defined as

em = max
t

(||pa(t) − pd(t)||). (43)

Here pa(t) is the measured robot position on the trajectory and
pd(t) the desired position, both given in the Cartesian space. The
task was then executed for each object mass and stiffness setting
using all three control approaches (Mrobot , Mtask , CMP).

Table I shows the mean and standard deviation of em over
all object weights cs for each stiffness setting ks . While the top
two sections present results gained by using the standard control
approach with two different models (Mrobot and Mtask ), the
bottom section presents errors arising while executing CMPs.
The same results are presented in Fig. 2. The tracking error
is quite high when Mrobot is used. If Mtask is used instead,
errors drop significantly. We can also observe that errors drop
even further if CMPs are used to execute the task. We can also
detect the point where the errors start to increase notably, i.e.,
at stiffness values lower than 50, ks < 50 N · m/rad. Based
on these results, the low gain stiffness value in all successive
experiments was set to ks = 50 N · m/rad. It should be noted
that the approach using point mass models Mtask was the only
approach with knowledge of the object mass. The proposed
CMPs do not need any prior information about the task after the
task-specific feedforward torques have been learned.

Example joint torques, presented in Fig. 3, show contri-
butions of different torque components during CMP learning
and execution. In the left column, where different torque
components during CMP learning are shown, the effect of
different masses can be seen. When the mass gets bigger, and
is not included in the dynamical model, the contribution of the
feedback torque gets larger, as the robots controller needs to
compensate for tracking errors. This torque is then stored and
encoded in the CMP (25). The right column shows torques
while executing the learned CMP (3) at high stiffness values

(ks = 1000 N · m/rad). The additional feedforward component,
i.e., CMP torque, marked with a dashed red line, compensates
for task specific dynamics and minimizes the feedback torque
component produced by the robot’s controller τfb . While the
feedback term is significant during learning, it drops to minimal
values during CMP execution. This enables low feedback gains
ks while maintaining high tracking accuracy without the need
for task-specific dynamical models.

B. Collision Evaluation

In the next experiment, we evaluated the CMPs while unex-
pectedly colliding with an object. The robot performed a simple
downward movement while an obstacle was blocking its path.
Previously, the movement was executed without the obstacle in
order to learn the corresponding task-specific torques. A soft
object was used, as to avoid extreme forces and possible robot
damage while exhibiting stiff movement. The movement into
the obstacle was performed three times using: 1) standard con-
trol (Mrobot) with high gains (ks = 1000 N · m/rad); 2) standard
control (Mrobot) with low stiffness value (ks = 50 N · m/rad);
and 3) CMPs with low stiffness value (ks = 50 N · m/rad). Fig. 4
shows three series of snapshots for each task execution. Fig. 5
depicts the plots of TCP tracking errors pa(t) − pd(t), mea-
sured tool center point forces and positions along the z axis,
respectively. In Figs. 4 and 5, we can observe that while using
the high-gain control, the robot simply tracks the desired trajec-
tory and penetrates into the obstacle. While the tracking error
remains low all through the movement, the forces rise signifi-
cantly after the collision. When using the standard low-stiffness
control (ks = 50 N · m/rad), forces do not rise as much even
after the collision, but the system is unable to track the trajec-
tory and the errors are high throughout the whole movement
(see Fig. 5). Poor tracking can also be seen in the middle four
snapshots of Fig. 4. The last series of snapshots show the move-
ment while using low stiffness settings (ks = 50 N · m/rad) and
CMPs. In Fig. 5, we can observe low tracking error before the
collision, which indicates good trajectory tracking despite low
stiffness settings. After the collision the error rises, as can be ex-
pected and as it is desirable for a compliant behavior. The object
remains almost nondeformed as the forces rise to approximately
just 1/4 of the ones exhibited while using standard high-gain
control. This experiment demonstrate that CMPs combine the
advantages of high-gain feedback control (high tracking accu-
racy) and compliant behavior (low forces caused by unexpected
collisions) while eliminating their disadvantages (high contact
forces and poor tracking), all without using analytical models of
task dynamics. All three executions and corresponding results
can also be seen in the accompanying video.
C. Discrete CMP Generalization

The experimental setup used to evaluate generalized discrete
CMPs was identical to the one used in Section V-A (see also
Fig. 1). The evaluation was done in two parts. In the first part,
we evaluated generalization performed over a 1-D query and
over a range of different stiffness settings, while in the second
part, we evaluated generalization over a 2-D query. We assume
accurate queries are given to the system as input data.
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Fig. 3. Example joint torque values during CMP learning and execution. Graphs in the left column show different torque components while learning
CMPs, i.e., corresponding torque learning, during a pick and place task of an object with mass of 0.5 and 4.5 kg (24–25). While the thick black
line denotes the complete joint’s measured torque τm = τu , blue and green represent its components, the torques contributed by Kuka’s own
dynamical model τdyn = fdynam ic (q, q̇, q̈) and the learned and stored feedback torque τx = τfb , respectively. Graphs in the right column show
example joint’s torque components during CMP execution with high stiffness settings ks = 1000 N · m/rad and varying object masses (3). Again,
the thick black line represents complete torque of the example joint τu and the blue and green line torques contributed from Kuka’s own dynamical
model τdyn = fdynam ic (q, q̇, q̈) and the feedback torque contributed by the robot’s controller τfb . The dashed red line shows additional feedforward
toque encoded in the CMP τx . It can be observed that the contribution from the robots controller drops significantly during CMP execution. This
enables us to lower the stiffness, i.e., the feedback gain, and compliantly move the robot while maintaining high tracking accuracy (without the need
for task-specific dynamical models).

Fig. 4. Robot colliding with an object with different stiffness settings and control approaches. In the first series of four images, the robot moved in
a stiff manner (ks = 1000 N · m/rad). The second set of images shows a collision while executing a compliant movement (ks = 50 N · m/rad). Both
of the movements were executed while using a standard closed-loop control. The last set of images shows the collision while moving in a compliant
manner using CMPs, given by (3), where the stiffness values were set to ks = 50 N · m/rad.

The previously obtained set of CMPs (41) was used for gener-
alization over a 1-D query, i.e., a varying object mass cs (40). As
described in Section IV, statistical methods were used to train
Gaussian process regression, which was then used to calculate
appropriate CMPs. The generalized CMPs could move an object
with arbitrary mass within the training space defined by example
set (41). New, generalized CMPs were executed for nine differ-
ent queries, covering the demonstrated as well as in-between
weights. For each query, the task was executed with eight dif-
ferent stiffness settings. Fig. 6 compares the maximum tracking
errors em of the generalized CMPs to the maximum tracking
errors em obtained when executing the originally demonstrated
CMPs. We can observe a slight, but not statistically significant
increase in the tracking error at the lower stiffness values, i.e.,

when the system is more susceptible to inaccuracies in general-
ized torque signals.

The second part of this section focuses on CMPs general-
ized over a 2-D query and their tracking accuracy w.r.t. query
points. Throughout this experiment, a stiffness setting of ks =
50 N · m/rad was used. In addition to varying the object mass,
the final robot position was also changing. The task was to move
the hand weight to different final positions. The queries were
defined as

c = [cg , cm ]T (44)

where cg denotes the final, i.e., goal position varying in height
and cm denotes the varying mass of the object. First, the motion
trajectories were obtained by kinesthetically guiding the robot
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Fig. 5. Robot colliding with an object while using different stiffness set-
tings and control approaches. The graphs present collision trajectories
and forces under two different stiffness settings (ks = 1000 N · m/rad and
ks = 50 N · m/rad) and with two different control approaches (Mrobot and
CMP). Blue trajectories show the performance of standard control with
high gains, red trajectories the performance of standard low-gain control,
and green trajectories the performance of CMPs. The top graph shows
position errors, while the second one shows TCP forces in the z axis.
The bottom one shows robot’s actual task space position in the signifi-
cant dimension, i.e., the vertical z axis. In the bottom graph the desired
trajectory is denoted by a dashed line, while the obstacle starts at 0 m.

for each example query cg . Six example goal positions were
used, varying for approximately 45 mm in height. Each of the
six example motion trajectories

Qx = {q̃xj , cgj}6
j=1 (45)

was tracked five times with a robot using high-gain feedback
controller at varying mass queries cm . The object mass varied
by 1 kg and covered the range from 0.5 to 4.5 kg. Altogether, 30
example pairs of motion trajectories and corresponding torques
{q̃x , τ̃ x} were obtained, covering all combinations of query
points [cg , cm ]. By encoding them as CMPs, a set of 30 example
CMPs was obtained

HCMP
x = {wq k , gqk ,wτ k , υk , ck}, k = 1, . . . , 30. (46)

Example CMPs were exploited as described in Section IV
to learn the generalization function (35) by Gaussian process
regression, which was then used to calculate new CMPs. The
generalized CMPs can compliantly move the object of arbitrary
mass to an arbitrary goal height within the training space defined
by example query points.

In order to evaluate the generalization of discrete compliant
tasks, we executed 99 compliant pick-and-place movements to

Fig. 6. Mean and standard deviation of discrete task’s maximum error
em . the top line shows the mean and standard deviation while executing
CMPs generalized over a one dimension query (gCMP). The bottom
line, showing the maximal mean and standard deviation while executing
learned CMPs (CMP), was gained in the previous experiment (see Fig. 2)
and is included for comparison.

different positions and with varying masses. These new CMPs
covered the whole training space, including 30 training and 69
new query points. The goal height varied by a step of 22.5 mm,
while the object mass was changed in steps of 0.5 kg. Example
executions of generalized CMPs can be seen in the accompany-
ing video.

For each task execution, maximum error em was calculated
using (43). Table II shows the maximum errors for each gen-
eralized CMP. Results are also shown in Fig. 7 and in the ac-
companying video. Note that the tracking error is slightly larger
when the mass of the object increases. This is to be expected, as
the system is more sensitive to the torque error contributed by
inaccurate generalization when the hand weight is heavy.

We calculated the mean and standard deviation of all these
99 maximum tracking errors em

me = 18.2(4.4) mm. (47)

If these values are compared to errors presented in previous
evaluation scenarios, we can note that the errors resulting from
generalized CMPs do not rise significantly compared to errors
arising from CMPs directly learned from one of the example
trajectories (see Table I) or generalized CMPs using a 1-D
query . This small rise in the tracking error can be attributed to
errors introduced through corresponding torques by statistical
generalization.

D. Periodic CMPs

In the last scenario, the proposed algorithm was evaluated on a
task where the robot was holding a handle of a height-adjustable
table as shown in Fig. 8. In order to gain a proper inverse
dynamical model fdynamic(q, q̇, q̈) analytically, the table would
need to be mathematically modeled. Due to the structure of
the table, this would be a complex and time consuming task.
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TABLE II
MAXIMUM ERRORS FOR GENERALIZED CMPS UNDER VARYING QUERIES

Final position height cq [mm]

0 22.5 44.7 67.2 89.2 111.7 133.7 156.2 179.2 201.7 224.4

Object 0.5 13.4 15.9 13.1 20.3 15.2 15.5 15.3 16.1 10.4 10.8 10.5
1 14.1 16.7 14.2 18.7 13.4 13.4 15.2 17.3 15.6 16.9 14.7

1.5 16.9 17.5 16.6 18.9 14.1 16.8 15.3 17 16.2 19.2 17.5
mass 2 15.5 16.3 14.8 17.6 13.6 13.5 12.6 13.4 12.6 18.7 12.1

2.5 14.3 15.1 15.2 18.6 12.5 13.9 12.8 16.5 14.7 21.2 18
3 16.9 16.2 16.7 23.9 14.9 17.4 13.9 23.2 22.2 28.6 19.6

cm [kg] 3.5 18.8 22.7 22.2 21.2 19.3 21.9 21.2 19.1 20.4 21.9 20.4
4 22.3 27.2 24.4 20.6 22 23.1 20.9 19.7 20.1 20 24

4.5 26.7 30.8 31.5 24.3 23.9 23.3 20.2 22.3 18.9 25.7 25.2

All error values are in millimeters.

Fig. 7. Maximum errors em that resulted from executing generalized
CMPs computed at different 2-D queries.

Instead, we used the proposed approach to gain the task-specific
dynamics, i.e., appropriate torques for each task variation. The
variations in the task of turning the handle were defined by two
queries

c = [ch , cω ]T . (48)

The first query ch defines the height of the table, and the sec-
ond cω defines the frequency of rotation. The example motion
trajectories

Qx = {q̃xj , chj}5
j=1 (49)

were obtained by kinesthetic guiding at example table heights
ch , varying by 80 mm. We recorded only five example trajec-
tories, which were then executed by a robot at five different
frequencies cω , ranging from 0.4 to 2 rad/s, using a high-gain

Fig. 8. Experimental setup for periodic tasks.

feedback controller. This resulted in 25 pairs of motion trajecto-
ries and corresponding torques {q̃x , τ̃ x}, obtained by executing
variations of recorded motions demonstrated by a human. They
cover all combinations of example query points [ch , cω ]. In this
way, we obtained an example set of 25 periodic CMPs

HCMP
x = {wq k , gqk ,wτ k , υk , ck}, k = 1, . . . , 25. (50)

This training data was used to estimate the generalization
function (35) using Gaussian process regression. Once the ap-
propriate hyperparameters were obtained, the robot was able to
compliantly turn the handle at arbitrary table height and fre-
quency throughout the whole training area, while calculating
the appropriate CMPs online. To show that the system can cal-
culate the CMPs in real time, the frequency query was defined
as a saw-like trajectory, while the changing table height was
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Fig. 9. Top and middle plot show two example joint and torque trajectories, respectively (example second joint). The bottom plot shows both
queries throughout the experiment.

Fig. 10. Task space trajectory in two crucial dimensions (plane of
rotation) as a function of time.

estimated by vision. Note that the height of the center of rota-
tion of the handle changes while the handle is rotated. This is
clearly seen in the last part of the accompanying video.

The results are shown in Fig. 9. It is evident that the proposed
system adapts to both queries smoothly and continuously.

Note that the DMP frequency parameter only allows
frequency adaptation for motion trajectories. Corresponding
torque signals are usually too complex to be modified by a single
parameter. However, with the proposed statistical approach,
they can by modified appropriately online. Another important
aspect is the resulting task space trajectory, which is shown in
Fig. 10, where x and z coordinates (plane of rotation) are shown
as the function of time. Here, we can see the adaptation of CMPs
to the changes of task descriptors, i.e., the height of the table and
the frequency of turning. The results are also shown in the video.

VI. DISCUSSION

The paper presents and evaluates the new concept of CMPs
and the accompanying techniques for their execution, learning,
and generalization. The proposed approach combines the ad-
vantages of stiff movements (high tracking accuracy) while ex-
hibiting low contact forces of compliant movements without the
need for task specific dynamic models. The experiments showed
CMPs are simply and promptly applied to various tasks. Only a
few human demonstrations are needed to successfully execute
a dynamically varying discrete or period task in a compliant
manner.
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While the low number of needed human demonstrations and
no need for experts make CMPs suited for service tasks in home
environments, the approach is primarily intended for industrial
applications. Small and medium enterprises (SMEs), adapting
to the current market, handle ever smaller batches of more di-
verse products. Because of long setup times and the need for
programming experts, a standard robot cell is an impractical and
financially unsound solution for SMEs. Adaptability of CMPs
eliminates these shortcomings and makes the use of robots vi-
able for small batches of varying products. For example, a pick
and place task is quite common in an industrial setting. A shared
workspace and objects of varying mass and size typically re-
quire long setup times for each new product. If we have a shared
workspace and objects of varying mass, a long setup time would
be needed for each new object when using standard approaches.
As was shown in our experiments, this can be easily solved with
CMPs. Another example industrial task, similar to the selected
periodic evaluation task, is turning of an object in assembly. Fur-
thermore, the approach is applicable for future service robots,
similar to valve turning in the recent DARPA challenge [57]. As
the initial demonstration for each new product can be quickly
done by nonexperts, high contact forces due to product abnor-
malities and errors in positions is avoided as the robot exhibits
high compliance.

Compliant behavior would usually be achieved through high
precision dynamical models describing each specific task. With
the rising complexity of humanoid robots, accurate dynamic
models also become more complex. Real physical systems
include a variety of unknown nonlinearities, such as friction,
gearboxes, elastic, and pneumatic elements, etc. These aspects
can degrade the dynamical model which consequently effects
the tracking accuracy [48]. Tracking errors can be mitigated
with high feedback gains, but that in turn raises stiffness and
unforeseen impact forces. Even more critically than the afore-
mentioned issues that can degrade the accuracy of dynamical
models, tasks can also introduce complex dynamics, which
is hard or even impossible to model analytically. Moreover,
these models are task specific, hence, each new task requires a
different dynamical model. The periodic task of handle turning
presented in this paper is an example of a complex, hard to
model, dynamic task. With this in mind, the presented CMPs
are an alternative to a standard approach using mathematically
defined dynamical models. The proposed approach can take into
account the aspects of the robot and task dynamics that were not
considered when specifying the mathematical dynamical model.

In the second step of the proposed approach, the trajectories
are executed with high-gain feedback loop, which enforces task-
specific dynamics. Note here that we assume that the robot is
accurately tracking the desired trajectory. The executed torque
profiles are recorded and used for training TPs. The combination
of TP and DMP defines a CMP. While the proposed approach
does not require prior dynamical model, such model can be used
if available. In our experiments, Kuka LWR’s own dynamical
model was available, but the CMP still mitigated any model
inaccuracies and provided the unmodeled aspects of the task
dynamics. In essence, learned TPs are used to compensate for
dynamic model errors and task-specific interaction forces.

The stiff behavior when learning task-specific dynamics in
the second step requires a controlled environment to prevent
damage to the robot. Instead of executing the trajectory in a stiff
manner, task specific dynamics could alternatively be gained
by reinforcement learning [58], [59]. This is, however, a much
lengthier process than the approach proposed in this paper.

While a rigorous analysis of the stability of generalized CMPs
is beyond the scope of this paper and would also not be general
but task dependent, we provided an intuitive stability analysis
in Section IV.A. As long as the task descriptors remain within
the training space, the generalized CMPs smoothly transition
between the demonstrated CMPs, which are assumed to be sta-
ble. It is therefore intuitive that the generalized CMPs are stable
as well. In our experiments, the generalized CMPs were always
stable unless extreme perturbations were applied to the robot.
The development of an additional adaptive controller, possibly
combined with DMP phase stopping techniques [60], will be
addressed in our future work.

Another approach of ensuring required tracking accuracy is
through variable impedance control [23]–[25]. While variable
impedance controllers—just as our approach—vary the gain,
the core of their approach is in essence quite different. This field
of research mainly focuses on achieving desired dynamic be-
havior by adjusting feedback gains to higher values when neces-
sary. While a (imperfect) robot’s dynamical model is assumed,
gain schedules, i.e., stiffness setting trajectories, are learned
[23], [24]. On the other hand, we focus on achieving compli-
ance throughout the task and simply reduce the gain—to a value
we have statistically determined to show no significant change in
the behavior. While there are similarities between our study and
the study being done in the field of variable impedance control,
our paper focuses on learning task-specific, i.e., corresponding
feedforward torques while minimizing stiffness to a minimum
throughout the movement.

In order to avoid CMP demonstration for each task variant, we
proposed to use statistical techniques. They can generalize a set
of example CMPs to new task variants, which proves useful if a
robot needs to execute a similar task several times under varying
conditions, e.g., everyday tasks in domestic settings. In general,
task descriptors/queries are perceived by a sensory system both
during learning and during task execution. If there are any errors
in the sensor readings, they do not affect the performance of
the system as long as they are the same in both phases. They
are included in the database when learning and automatically
compensate themselves when the task is executed. But if the
sensors readings vary, the errors will not be compensated and
the task will fail. This is the case for any learning approach
as well as for standard control approaches that use analytically
defined dynamical models.

Our evaluation showed the viability of the proposed ap-
proach. The results comparing CMPs to standard approaches
at various stiffness settings show the viability of CMPs as the
tracking accuracy was higher compared to standard approaches.
The magnitude of error stayed in the same area even at low
stiffness values. Evaluation also showed that while colliding
with an obstacle, CMPs produce low impact forces of compliant
movements, while at the same time exhibiting high tracking
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accuracy characteristic for stiff motion resulting from the
classic high-gain feedback control.

Generalized CMPs were also evaluated. By using Gaussian
process regression, we were able to generalize CMPs to any set
of queries within the training space. By evaluating the approach
on a discrete pick-and-place task we showed that the tracking
error introduced by generalization remains small. In the experi-
ment involving periodic motion, a hard-to-model task of raising
a height-adjustable table was demonstrated. We showed that the
proposed approach was able to calculate the appropriate CMPs
in real time. While alternative generalization techniques to
Gaussian process regression might reduce the errors introduced
by the application of the technique originally proposed in [17],
many of them would not be able to adapt CMPs online due to
the significant rise in the calculation time [16].
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“Learning collaborative impedance-based robot behaviors,” in Proc. AAAI
Conf. Artificial Intell., Bellevue, WA, USA, 2013, pp. 1422–1428.

[14] S. Schaal, P. Mohajerian, and A. Ijspeert, “Dynamics systems vs. opti-
mal control—A unifying view,” Prog. Brain Res., vol. 165, pp. 425–445,
2007.

[15] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal, “Dynam-
ical movement primitives: Learning attractor models for motor behaviors,”
Neural Comput., vol. 25, no. 2, pp. 328–373, 2013.

[16] A. Ude, A. Gams, T. Asfour, and J. Morimoto, “Task-specific generaliza-
tion of discrete and periodic dynamic movement primitives,” IEEE Trans.
Robot., vol. 26, no. 5, pp. 800–815, Oct. 2010.

[17] D. Forte, A. Gams, J. Morimoto, and A. Ude, “On-line motion synthesis
and adaptation using a trajectory database,” Robot. Auton. Syst., vol. 60,
no. 10, pp. 1327–1339, 2012.

[18] H. Ben Amor, G. Neumann, S. Kamthe, O. Kroemer, and J. Peters, “Inter-
action primitives for human–robot cooperation tasks,” in Proc. IEEE Int.
Conf. Robot. Autom., Hong Kong, China, 2014, pp. 2831–2837.

[19] T. Inamura, I. Toshima, H. Tanie, and Y. Nakamura, “Embodied symbol
emergence based on mimesis theory,” Int. J. Robot. Res., vol. 23, nos. 4/5,
pp. 363–377, 2004.

[20] S. Calinon, F. D’halluin, E. L. Sauser, D. G. Caldwell, and A. G. Billard,
“Learning and reproduction of gestures by imitation,” IEEE Robot. Autom.
Mag, vol. 17, no. 2, pp. 44–54, Jun. 2010.

[21] S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear dynam-
ical systems with gaussian mixture models,” IEEE Trans. Robot., vol. 27,
no. 5, pp. 943–957, Oct. 2011.

[22] I. Havoutis and S. Ramamoorthy, “Motion planning and reactive control
on learnt skill manifolds,” Int. J. Robot. Res., vol. 32, nos. 9/10, pp. 1120–
1150, 2013.

[23] J. Buchli, F. Stulp, E. Theodorou, and S. Schaal, “Learning variable
impedance control,” Int. J. Robot. Res., vol. 30, no. 7, pp. 820–833,
2011.

[24] K. Kronander and A. Billard, “Learning compliant manipulation through
kinesthetic and tactile human–robot interaction,” IEEE Trans. Haptics,
vol. 7, no. 3, pp. 367–380, Jul.–Sep. 2014.
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