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Abstract—This paper addresses the problem of achieving high
robot compliance while maintaining low tracking error without
the use of dynamical models. The proposed approach uses pro-
graming by demonstration to learn new task related compliant
movement. The presented Compliant Movement Primitives are
a combination of 1) position trajectories, gained through human
demonstration and encoded as Dynamical Movement Primitives
and 2) corresponding torque trajectories encoded as a linear
combination of radial basis functions. A set of example Compliant
Movement Primitives is used with statistical generalization in
order to execute previously unexplored tasks inside the training
space. The proposed control approach and generalization was
evaluated with a discrete pick-and-place task on a Kuka LWR
robot. The evaluation showed a major decrease in tracking error
compared to a classic feedback approach and no significant rise
in tracking error while using generalized Compliant Movement
Primitives.

I. INTRODUCTION

Programming by demonstration (PbD) [1]–[4] is a popular

way of gaining new sensorimotor knowledge through human

demonstration. Learning of trajectories may rely on a single

example demonstration, e.g., training of dynamic movement

primitives (DMPs) [5], [6]. It can also be done with the

use of multiple demonstrations. Statistical generalization can

employ multiple demonstrations and synthesize an appropriate

trajectory for a new task within the training space from a set

of recorded movements [7]–[9].
Another aspect addressed in this paper is the robot’s reaction

to unforeseen contacts with the environment. This is especially

important when the robot shares its workspace with humans.

One way of minimizing impact forces is by detecting and

interpreting contacts. This can be done by using sensitive

skin, represented by a soft tactile sensing array [10], [11]

or by a bumper based hard shell [12]. A robot can also be

made safer without the use of additional sensors by making it

compliant. They can be made passively compliant by design

[13] by reducing the weight and hardness of the robot structure

[14], [15] or through actuator design by implementing elastic

elements [16], [17].
As an alternative to passive approaches, compliance can also

be achieved either through advanced control approaches [18],

[19] or through torque control strategies [20], [21]. But besides

having access to actual torques through sensors, a correct

dynamic model for each task variation must be available.

The task-specific dynamic can be obtained with mathemati-

cal modeling of the task [22], [23]. However, mathematical

modeling is a difficult and time consuming task that can

only be performed by an expert. As an alternative, different

biologically inspired methods were proposed for dynamic

robot control [24].

This paper proposes achieving active compliance through

torque control. But instead of using a dynamical model for

each task variant, we introduce Compliant Movement Primi-

tives (CMPs), which are inspired by the human sensorimotor

ability to learn arbitrary dynamic tasks. The first step in the

process of gaining CMPs is the demonstration of the desired

motion trajectory and its encoding as DMP. This trajectory is

then executed on a robot while using a high-gain feedback

control. The actually executed torque signals are recorded and

then encoded as a linear combination of radial basis functions,

defined as a Torque Primitive (TP). The task-related position

trajectory supplemented with the corresponding torques is

denoted as a CMP. The proposed control approach uses the

torque component as a feedforward term while using the

position trajectory in a low-gain feedback loop. This ensures

that low gains can be used for control and consequently the

desired task can be performed safely.

While the proposed approach eliminates the need for dy-

namical modeling, a CMP needs to be learned for each

task variation. This can be mitigated through generalization.

An example set of demonstrated CMPs is generalized with

statistical methods in order to compute a new CMP suitable

for the desired task variant inside the training space. With this

addition to the proposed approach the robot is able to learn

and perform variations of the (semantically) same task in a

compliant manner without the need for experts to program

movements and dynamical models.

II. COMPLIANT MOVEMENT PRIMITIVES

A compliant movement, which accomplishes a task in a

compliant manner, is defined in this paper as a combination of

desired position trajectories and corresponding torques signals

h(t) = [qd(t), τf (t)]. (1)978-1-4673-7509-2/15/$31.00 2015 IEEE



The kinematic part qd(t) represents desired joint trajectories

of the compliant movement,

qd(t) = [qd1(t), qd2(t), . . . , qdn(t)], (2)

where n denotes number of degrees of freedom (DOF). The

second part presents the dynamics of the movement, i.e.,

corresponding joint torque signals

τf (t) = [τd1(t), τd2(t), . . . , τdn(t)]. (3)

This section of the paper presents a proposed approach for

learning compliant movements through human demonstration,

encoding them as a combination of linear basis functions, and

a proposed control approach for their execution.

A. Learning compliant movements

The kinematic part of the compliant movement is gained

from human demonstration. Although various techniques for

human motion capture can be used [25]–[27], kinesthetic

guidance [28] is used in this paper. With it, a set of example

motion trajectories is captured in joint space,

Qx = {{qx1(t), cq1}, {qx2(t), cq2}, . . . , {qxN (t), cqN}},
(4)

where x stands for examples and N denotes the total number

of captured examples. Each example trajectory successfully

accomplishes a version of the task described through query

cq . These N kinematic task descriptors influence the position

part of the CMP and can denote a variety of things, e.g., initial

position of a movement in task space that varies in a single

dimension, cq = xstart, final position of the discrete movement

in joints space, cq = [q1, q2, . . . , qn], the position of a known

obstacle, cq = [px, py], etc.

The dynamic part of the compliant movement is gained

through execution of captured kinematic trajectories on a

robot. Demonstrated movements qx are executed in a con-

trolled environment or under human supervision using a high

gain feedback controller

τu = K(qx − q) +D(q̇x − q̇), (5)

where high values of K ensure the required tracking accuracy

(for further details on control framework see the Appendix).

The τx are measured on each joint during execution,

τx = τm. (6)

With the above equations we assume that the robot’s dy-

namical model is not known beforehand. In this case the

corresponding torque signals would be used to compensate

for task-specific dynamics and robot’s own dynamics. In the

case of known robot’s dynamic model, (5) changes to

τu = K(qx − q) +D(q̇x − q̇) + fdynamic(q, q̇, q̈), (7)

with fdynamic(q, q̇, q̈) representing the model. In this case the

corresponding torques (6) are gained by subtracting the known

robot’s dynamics from actual measured joint torques,

τx = τm − fdynamic(q, q̇, q̈). (8)

The dynamic part of the compliant movement now compen-

sates for the task dynamics and mitigates any model’s errors.

The same demonstrated kinematic trajectory qx can be

executed multiple times under different conditions which vary

the dynamic part of the task. Each of these dynamic task

descriptors cτ will produce a different compliant movement

with same kinematic parts but varying dynamic parts. For

example, the same kinematic trajectory can be executed at

varying velocities and produce compliant movements with

different corresponding torques. Similar, moving objects of

varying mass cτ = m over the same position trajectory will

produce corresponding torques that differ for each mass. Thus

we can obtain a set of example torque signals,

Tx = {{τx1, cτ 1}, {τx2, cτ 2}, . . . , {τx(NM), cτ (NM)}},
(9)

where M is the number of times each example motion

trajectory qxi, was executed with varying conditions cτ (ij),

i = 1, . . . , N, j = 1, . . . ,M .

Through human demonstration and execution under varying

condition we can learn a set of total NM example compliant

movements, i.e., pairs of motion trajectories and corresponding

torques,

Hx = {{qx,1, τx,1}, . . . , {qx,1, τx,M},

{qx,2, τx,M+1}, . . . , {qx,2, τx,2M}, . . . ,

{qx,N , τx,(N−1)M+1}, . . . , {qx,N , τx,(NM)}}, (10)

which can be used to compliantly execute tasks under varying

conditions defined by query points,

Cx = {{cq1, cτ ,1}, . . . , {cq1, cτ ,M},

{cq2, cτ ,M+1}, . . . , {cq2, cτ ,2M}, . . . ,

{cqN , cτ ,(N+1)M+1}, . . . , {cq,N , cτ ,(NM)}}. (11)

B. Encoding CMPs

Each learned movement is encoded as a Compliant Move-

ment Primitive (CMP). Motion trajectories are encoded as

Dynamic Movement Primitives (DMPs), while corresponding

torque signals are encoded as a linear combination of Gaussian

functions, defined in this paper as a Torque Primitive (TP).

A CMP is defined as a combination of a motion trajectory,

encoded as a DMP, and corresponding torques, encoded as a

TP.

The motion trajectories are encoded as DMPs. Details

regarding DMPs are omitted and the readers are referred to

[5]–[7]. Corresponding torques τx, on the other hand, are

rather encoded as a linear combination of basis functions. The

torques for one DOF are given by

τx(s) =

∑Ld

i=1 wτiψi(s)
∑Ld

i=1 ψi(s)
. (12)

Note here that the phase variable s is common across the CMP,

i.e., across all DOFs of the TP and the DMP. As with DMPs,



regression techniques are used in order to compute the torque

primitive τx(s) by solving a simplified equation system:

fij = τxj(ti), i = 1, . . . , T. (13)

By encoding motion trajectories as DMPs and correspond-

ing torque signals as TPs, we obtain a set of NM example

CMPs

HCMP
x = {wqk

, gqk,wτ k, υk, ck}, k = 1, . . . , NM, (14)

represented by DMP weights wqk
and goals gq,k, TP weights

wτ k, common durations of DMP and TP υk and query points

ck.

C. Executing CMPs

In order to execute a movement in a compliant manner, we

could use a standard feedback controller (5) with low K val-

ues. However, the tracking errors would raise drastically. That

can be mitigated by adding a precise inverse dynamic model

of the robot (7). Mathematical modeling can be a demanding

and time consuming task, that needs to be performed by an

expert. Furthermore, the dynamic task, for which a model can

also be needed, can change often, especially in unstructured

home environments.

As an alternative we propose using a controller given by

τu = K(qd − q) +D(q̇d − q̇) + τf , (15)

or in case of a known dynamical model of a robot,

τu = K(qd−q)+D(q̇d− q̇)+τf +fdynamic(q, q̇, q̈). (16)

In (15) and (16) τf denotes the additional feedforward torque

signal, which compensates for the task-specific dynamics

and/or robot’s flawed or non-existing dynamical model. To

execute a CMP, we use the motion trajectory as desired

trajectory and the learned corresponding torque as a feed

forward torque.

III. STATISTICAL GENERALIZATION OF CMPS

Learning CMPs through human demonstration can simplify

compliant execution of dynamically versatile tasks. But this

cannot be done for each possible variation of the task. For

each new task descriptor, a new CMP needs to be learned,

i.e., motion trajectory needs to be learned through human

demonstrations and executed on a robot for torque learning. If

the movement deviates just on the torque level, e.g. because of

different payload, then only supervised learning of the torque

is needed. This new learning can however be avoided by

using statistical generalization techniques. For that a set of

learned CMPs which transition smoothly between each other

as a function of query points (i.e. task descriptors) is needed.

Generalization allows executing tasks at an arbitrary query

point c within the learned query space.

For statistical generalization we use the Gaussian process

regression (GPR), which can be used to learn a function

FHCMP
x

: c 7−→ [wq, gq,wτ , υ]. (17)

A CMP, defined by wq , gq , wτ , and υ, can be used to execute

a task, defined by a query c, in a compliant manner. By the

above definition, FHCMP
x

(c) computes an appropriate CMP

parameters at the given query c i. e. task variation.

A Gaussian process describes a distribution over functions

[29]. For each component function f of the vector valued

function FHCMP
x

(c), Gaussian process regression can be used

to estimate f from data such as the one given in (14). In

general, Gaussian process is defined as

f(c) ∼ GP(m(c), cov(c, c′)), (18)

where m(c) = E(f(c)) is its mean function and cov(c, c′) =
E[(f(c)−m(c))(f(c′)−m(c′))] its covariance function.

Lets denote example outputs of one component of the CMP

as gk = f(ck)+ǫ, where ǫ is normally distributed white noise,

ǫ ∼ N (0, σ2
n), which denotes the measurement noise. Lets

assume now that besides the original data we obtain a new set

of inputs c∗1, . . . , c
∗

k and outputs g∗ = [g∗T1 , . . . , g∗TK ]T . If the

mean of the process is assumed zero, the joint distribution of

example outputs g = [gT1 , . . . , g
T
NM ]T and new outputs g∗ is

given by
[

g

g∗

]

∼ N

(

0,

[

Σ(C,C) + σ2
nI Σ(C,C∗)

Σ(C∗,C) Σ(C∗,C∗)

])

, (19)

where C denotes the matrix of example inputs, C∗ matrix of

the new inputs and Σ is obtained by pairwise evaluation of

the covariance function cov. In our experiments we used the

squared exponential covariance function

cov(c, c′) = σ2
f exp

(

−
‖c− c′‖2

2l2

)

, (20)

where parameter σf defines the variance of the signal {gk}
and l is the characteristic length-scale, i.e. roughly the distance

that one has to move in the input space before the value of

the function changes significantly [29].

Thus given new queries c∗, using (19) we can estimate the

mean of output values g∗ as follows [29]

ḡ∗ = Σ(C∗,C)[Σ(C,C) + σ2
nI]

−1g. (21)

As stated before, the Gaussian process is fully defined by mean

and covariance functions. While assuming the mean to be zero,

we still need to define the covariance function.

Equation (20) introduces new parameters that need to be

determined. These free parameters, called hyperparameters,

θ = {σf , l, σn}. (22)

affect the prediction of the Gaussian process. Ideally, hyper-

parameters are computed automatically. This can be accom-

plished by maximizing the log marginal likelihood

L = log p(g|C,θ)=−
1

2
gT [Σ(C,C) + σ2

nI]
−1g − (23)

1

2
log

(

det
[

Σ(C,C) + σ2
nI
])

−
n

2
log 2π,

which can be done using any of the standard nonlinear

optimization routines.



Fig. 1. Experimental setup and example task execution for stiffness evaluation. The robot picks up the hand-weight on the left, carries it to the right over a
demonstrated position trajectory and releases it.

Optimizing the hyperparameters θ and calculating the in-

verse matrix [Σ(C,C) + σ2
nI]

−1 (21) is the most computa-

tionally expensive part of Gaussian process regression. But all

these calculations can be done offline as they depend only on

the training data HCMP
x .

Once the GP is trained using example training sets of

CMPs, new appropriate CMPs for given queries c can be

calculated by simple matrix multiplications, which can easily

be accomplished in real time.

IV. EVALUATION

To evaluate discrete CMPs and their generalization we

used a Kuka LWR 4 arm with a mounted BarrettHand BH8-

280. While our approach does not need the robot’s dynam-

ical model, Kuka’s own dynamical model was used in all

experiments presented in this paper, see (7, 8, 16). CMP

compensated for any model’s errors and for task dynamics.

The experimental setup can be seen in Fig. 1 and Fig. 5. All

7 of robot’s DOF were used throughout the experiments. The

first part of this chapter focuses on CMP evaluation, more

specifically, on tracking errors under various stiffness settings

while using classical feedback control and the proposed CMPs.

While the second part briefly looks at collision evaluation,

the third part tackles generalized CMPs. It compares learned

CMPs to CMPs generalized using a one dimensional query. It

also evaluates trajectory tracking of CMPs generalized over a

two dimensional query, effecting both parts of the CMP.

A. Learned CMP evaluation

The effects of the stiffness parameter on the tracking error

was analyzed while executing a pick and place task using a

classic feed-back controller and proposed CMPs. The exper-

imental setup can be seen in Fig. 1, presenting an example

pick and place movement in a series of snapshots. A trajectory

qs(t), moving a hand weight from the initial position to the

final position, was demonstrated by kinesthetic guiding. It was

then executed five times using a high-gain feedback controller

(7), which ensures high tracking accuracy. For each repetition,

the mass of the object was changed

cs = {m1,m2,m3,m4,m5} = {0.5, 1.5, 2.5, 3.5, 4.5} [kg],
(24)

and different corresponding torques were obtained. The motion

trajectories and corresponding torques were encoded as CMPs

HCMP
s = {wqi

, gqi,wτ i, υi, ci}, i = 1, 2, 3, 4, 5. (25)

For evaluation, demonstrated movement was first executed

several times while using classical feed-back control (7). For

each object mass several executions were done under varying

stiffness settings. The movement was then executed as a CMP,

i.e., using feedforward torques (16), which were encoded in the

CMPs. Again, several executions for each object mass were

done under different stiffness settings. For comparison, the

maximum error for each task execution is defined as

em = max
t

(||pa(t)− pd(t)||), (26)

where pa(t) is the measured robot position on the trajectory

and pd(t) is the desired position on the trajectory, both given

in Cartesian space. Eight different stiffness settings were used

ks = {10, 25, 50, 125, 250, 500, 1000, 2000} [Nm/rad], (27)
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noFF

CMP

Fig. 2. Mean and standard deviation of task’s maximum error em over the
object’s mass. The bottom line shows the error’s mean and standard deviation
for the proposed system with task-specific feedforward torques (CMP), while
the top one shows the mean and standard deviation for the feedback control
without feedforward torque signal (noFF).



TABLE I
MAXIMUM ERRORS FOR TASK EXECUTIONS USING TWO DIFFERENT CONTROL APPROACHES UNDER VARYING STIFFNESS

SETTINGS. ALL ERROR VALUES ARE IN MILLIMETERS.

Stiffness setting ks [Nm/rad]
10 25 50 125 250 500 1000 2000

no FF

m1 138* 66.4 41.4 21.7 13.8 10.3 10.9 11.2
m2 295* 188* 123* 59 34.3 17.9 9.57 5.24
m3 313* 285* 171* 94.5* 52.6 29.2 15.6 8.62
m4 335* 297* 232* 117* 75.7* 41.7 22.8 13
m5 342* 290* 283* 149* 87.2* 50.8 28.2 16

mean 285 (83.8) 225 (99.4) 170 (93.8) 88.3 (49.6) 52.7 (29.9) 30 (16.6) 17.4 (7.94) 10.8 (4.11)

CMP

m1 41.9 16 9.1 9.14 10.5 11.1 11.5 11.6
m2 37.7 15.9 7.76 2.61 2.28 2.82 3.14 3.35
m3 31.9 13.2 7.22 3.53 2.85 3.01 3.47 3.48
m4 40.9 13 6.52 3.73 4.8 5.7 6.1 6.19
m5 27.4 19 12.9 12.2 11.3 11.5 11.4 11.5

mean 36 (6.18) 15.4 (2.45) 8.71 (2.54) 6.24 (4.19) 6.35 (4.28) 6.83 (4.24) 7.12 (4.12) 7.22 (4.1)
*Due to a high tracking error the execution of the pick and place task was unsuccessful.

were ks are the diagonal elements of the stiffness matrix K =
ksI, see (16) and (7). These values were selected in order to

cover a wide spectrum of compliance exhibited by the Kuka

LWR robot.

Table I shows the mean and standard deviation of em
over all object weights cs for each stiffness setting ks. The

top row presents values for the feedback controller without

feedforward term, while the bottom row presents values gained

by using CMPs, i.e. with the learned feedforward toques.

Cases when the robot was not able to successfully accomplish

the task, i.e., picking the object and placing it on the goal,

are marked with a star (*). The same results are presented in

Fig. 2 with mean values over the object’s mass. We can see that

the tracking error is much larger (with a statically significant

difference) if feedforward torques are not used compared to

the proposed approach. We can also detect the point where the

errors start to increase notably, i.e. at stiffness values lower

than 50, ks < 50 Nm/rad. Based of these results, the stiffness

value in the final experiment was set to ks = 50 Nm/rad.

B. Collision evaluation

In the next experiment we evaluated CMPs while unexpect-

edly colliding with an object. A simple downward motion

was demonstrated and executed in order to train the CMP.

While the movement was re-executed an obstacle was put

in its path. Three different approaches were used:1) standard

control with high gains, 2) standard control with low gains,

and 3) a previously learned CMP with low stiffness values.

TCP tracking errors (pa(t) − pd(t)), measured tool center

point forces and positions along the z axis are showed in Fig.

3. We can observe that while using a standard approach with

high gains the tracking error remains small throughout the

movement, but as the robot exhibits stiff behavior forces raise

significantly after the contact with the obstacle. If the feedback

gains are lowered, the robot moves in a compliant manner and

the forces drop. But the tracking accuracy is diminished. The

CMP combines positive aspects of both standard approaches.

While the tracking accuracy remains high before the contact,

the forces are low after the contact.
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noFF , ks = 1000 [Nm/rad] noFF , ks = 50 [Nm/rad] CMP , ks = 50 [Nm/rad]

Fig. 3. Robot colliding with an object while using different stiffness
settings and control approaches. The graphs present collision trajectories
and forces under two different stiffness settings (ks = 1000 Nm/rad and
ks = 50 Nm/rad) and with two different control approaches (noFF and
CMP ). Blue trajectories show the performance of standard control with high
gains, red trajectories the performance of standard low-gain control, and green
trajectories the performance of CMPs. The top graph shows position errors,
while the second one shows TCP forces in the z axis. The bottom one shows
robot’s actual task space position in the significant dimension, i .e., the vertical
z axis. In the bottom graph the desired trajectory is denoted by a dashed line,
while the obstacle starts at 0 m.
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Fig. 4. Mean and standard deviation of task’s maximum error em over the
object’s mass. The bottom line shows the error’s mean and standard deviation
while executing learned CMPs. The top line denotes executions of generalized
CMPs (gCMP).

C. Generalized CMP evaluation

For the purpose of evaluating generalized CMPs, they

were first compared to learned, non-generalized, CMPs. The

experimental setup and task remained identical to the previous

experiment (Fig.1). The same set of learned CMPs was also

used (25). They were generalized (see Sec. III) over a one

dimensional query, i.e., a varying object mass. Generalized

CMPs could compliantly move an object with arbitrary mass

within the training space. New, generalized, CMPs were ex-

ecuted for 9 different queries, covering demonstrated weights

as well as points in between. For each query, the task was

executed for 8 different stiffness settings. Fig. 4 compares

the maximum tracking errors em of generalized CMPs to

maximum tracking errors gained by executing learned CMPs,

in the previous subsection. We can observe a slight, but not

statistically significant, increase in tracking error at lower

stiffness values, when the system is more susceptible to

inaccuracies in generalized torque signals.

The final part of the evaluation focused on CMPs general-

ized over a two dimensional query and tracking errors w.r.t

query points. The pick and place experimental setup can be

seen in Fig. 5. Throughout this experiment a stiffness setting of

ks = 50 Nm/rad was used. In addition to varying object mass,

the final configuration was also changing. The task was to

move the hand weight to different final positions. The queries

were defined as

cd = [cg, cm], (28)

where cg denotes the final, i.e., goal position varying in height

and cm denotes the varying mass of the object. First, the

motion trajectories were obtained by kinesthetically guiding

the robot for each example query cg . Six example goal

positions were used, varying for approximately 45 mm in

height. Each of the six example motion trajectories,

Qx = {{qx1(t), cg1}, {qx2(t), cg2}, . . . , {qx6(t), cg6}},
(29)

was tracked 5 times with a robot using high-gain feedback con-

troller at varying mass queries cm. The object mass varied by 1

kg and covered the range from 0.5 kg to 4.5 kg. Altogether, 30

example pairs of motion trajectories and corresponding torques

{q(t)x, τ(t)x} were obtained, covering all combinations of

query points {cg, cm}. By encoding them as CMPs, a set of

30 example CMPs was obtained

HCMP
x = {wqi

, gqi,wτ i, υi, ci}, i = 1, . . . , 30. (30)

Example CMPs were employed as described in Section III

to calculate new CMPs. The generalized CMPs can compli-

antly move the object of arbitrary mass to an arbitrary goal

height within the training space defined by example query

points.

In order to evaluate the generalization of CMPs over a two

dimensional query, 99 compliant pick-and-place movements

to different positions and with varying masses were executed.

These new CMPs covered the whole training space, including

30 training and 66 new query points. The goal height varied

by 22.5 mm, while the object mass was changed in steps of

0.5 kg.

For each task execution, maximum error em was calculated

using (26). Table II shows the maximum errors for each

generalized CMP. Results are also shown in Fig. 6. Note

that the tracking error is slightly larger as the mass of the

object increases. This is to be expected, as the system is

more sensitive to the torque error contributed by inaccurate

generalization when the hand weight is heavy (the actual task

dynamics differ most from the Kuka’s model own dynamical

model).

Fig. 5. Experimental setup for two dimensional query generalization evaluation. The robot picks up the hand-weight on the right, carries it to the left and
releases it. The task varies in the object’s mass and the height of the end position.



TABLE II
MAXIMUM ERRORS FOR GENERALIZED CMPS UNDER VARYING QUERIES.

ALL ERROR VALUES ARE IN MILLIMETERS.

Final position height cq [mm]
0 22.5 44.7 67.2 89.2 111.7 133.7 156.2 179.2 201.7 224.4

0.5 13.4 15.9 13.1 20.3 15.2 15.5 15.3 16.1 10.4 10.8 10.5
1 14.1 16.7 14.2 18.7 13.4 13.4 15.2 17.3 15.6 16.9 14.7

Object
1.5 16.9 17.5 16.6 18.9 14.1 16.8 15.3 17 16.2 19.2 17.5
2 15.5 16.3 14.8 17.6 13.6 13.5 12.6 13.4 12.6 18.7 12.1

mass
2.5 14.3 15.1 15.2 18.6 12.5 13.9 12.8 16.5 14.7 21.2 18
3 16.9 16.2 16.7 23.9 14.9 17.4 13.9 23.2 22.2 28.6 19.6

cm [kg]
3.5 18.8 22.7 22.2 21.2 19.3 21.9 21.2 19.1 20.4 21.9 20.4
4 22.3 27.2 24.4 20.6 22 23.1 20.9 19.7 20.1 20 24

4.5 26.7 30.8 31.5 24.3 23.9 23.3 20.2 22.3 18.9 25.7 25.2

We calculated the mean and standard deviation of all these

99 maximum tracking errors em

mx
e = 18.2(4.4) mm. (31)

If these values are compared to errors presented in previous

evaluation scenarios, we can note that the errors resulting

from generalized CMPs do not rise significantly compared to

errors arising from CMPs directly learned from one of the

example trajectories (Table I) or generalized CMPs using a

one dimensional query (Fig. 4).
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Fig. 6. Maximum errors em that resulted from executing generalized CMPs
computed at different queries.

V. CONCLUSION

Proposed CMPs can be learned in a two step process:

1) position trajectory gained through programming by de-

mostration and 2) corresponding torque signals gained by

execution of position trajectories on a robot while using a

high gain feedback control. The paper shows that CMPs can

be executed by a proposed control approach in a compliant

manner while maintaining low tracking errors. Evaluation on

a discrete pick and place task without the use of dynamical

models showed a significant decrease in tracking error over

a wide range of compliance with respect to classic feedback

control approaches. Collision evaluation showed that CMPs

combine high tracking accuracy while executing a movement

unperturbed and compliant behavior, i.e., low forces at unfore-

seen contacts. While no dynamical models are needed to gain a

task specific CMP, it must be done for each task variation. This

can be mitigated by using statistical generalization techniques

in order to gain appropriate CMPs for previously unexplored

task variations inside the training space. While evaluation of

generalized position trajectories was already done [7], [8], this

paper focuses on generalized CMPs and its effect on tracking

errors. Evaluation showed no significant rise in error while

executing generalized CMPs over one or two dimensional

queries.

APPENDIX A

CONTROL FRAMEWORK

This appendix briefly presents the used control framework.

Assuming that a robot consists of rigid bodies, the equations

of motion can be written as

H(q)q̈ +C(q, q̇) + g(q) + ǫ(q, q̇, q̈) = τ , (32)

where q, q̇ and q̈ are the joint positions, velocities and

accelerations, respectively, H(q) is the inertia matrix, C(q, q̇)
are the Coriolis and centripetal forces, g(q) are the gravity

forces and ǫ(q, q̇, q̈) are the nonlinearities which are not

considered in the rigid body dynamics, e. g. friction. If the

robot’s inverse dynamic model given by (32) and denoted as

fdynamic(q, q̇, q̈) is known, a possible control approach for



tracking the desired trajectory (qd, q̇d) is defined as

τu = K(qd − q) +D(q̇d − q̇) + fdynamic(q, q̇, q̈). (33)

where τu is the commanded torque for joint specific

impedance control, D is the damping matrix, and K is the

diagonal matrix that determines the stiffness of the robot.

If the diagonal elements of K in (33) are high, then the robot

behavior is stiff. This also implies better tracking accuracy of

the desired joint trajectories qd. By lowering the values of the

matrix K, the robot becomes less stiff i. e. more compliant.

However, with compliant behavior tracking errors can rise

significantly, as the robot cannot accurately follow the desired

trajectory.
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