
Spatial Constraint identification of parts in SE3 for action optimization

Jimmy Alison Jørgensen, Nadezda Rukavishnikova, Norbert Kruger and Henrik Gordon Petersen

The Maersk Mc-Kinney Moller Institute, Faculty of Engineering
University of Southern Denmark

5230 Odense M, Denmark
{jimali,nadezda,norbert,hgp}@mmmi.sdu.dk

Abstract— In this paper we present a method to structure
contextual knowledge in spatial regions/manifolds that may be
used in action selection for industrial robotic systems. The
contextual knowledge is build on relatively few prior task
executions and it may be derived from either teleoperation
or previous action executions. We argue that our contextual
representation is able to improve the execution speed of individ-
ual actions and demonstrate this on a specific time-consuming
action of object detection and pose estimation.

Our contextual knowledge representation is especially suited
for industrial environments where repetitive tasks such as bin-
and belt picking are plentiful. We present how we classify and
detect the contextual information from prior task executions
and demonstrate the performance gain on a real industrial
pick-and-place problem.

I. INTRODUCTION

In industrial automation there is an increasing demand for
fast reconfigurable robot platforms. Currently, reconfiguring
a robot platform requires time consuming and expensive
manual labor, often by expert roboticists. The main rea-
son is that industrial programs tend to be very specific,
requiring the offline definition of most spatial knowledge
in the workspace. This could for example be object poses
from which camera views and grasping motions are defined.
There are two drawbacks of such labor-intensive program
definition: (i) lost flexibility and (ii) experts are needed for
any reconfigurations.

Reducing the extensive need for experts in programming
robots has been a focus in research for decades. This has
resulted in advances within motion, grasp and task plan-
ning, dexterous hands, etc. These advances combined into
a generic action can yield highly automatic plans from only
little or no expert guidance. Thereby in general reducing the
need to involve experts for many specific programming tasks.

Unfortunately generic actions tend to be slow due to
missing information such as where in which area objects are
placed. Normally this kind of information should be specified
by an expert user. However if the robot could slowly generate
this knowledge itself while executing slow but robust generic
actions and incrementally select more optimal and specific
actions, then the system could avoid experts advice. We argue
that for repetitive actions in industry this is possible.

In the remainder of this paper, we will present an approach
for structuring contextual knowledge derived from previous
successful action executions as depicted in Fig. 1. This

knowledge is then used to choose a more specific and better
parameterized action in place of the generic one. Initially we
exploit that generic actions can be used to find a solution,
however slow, and then gradually information gathered from
the solution is used to hypothesize on the constraints of the
problem.

Action
execution Action selection

Pose
classification

Simulation

Event
segmentation

Spatial
constraint
processing

Knowledge
base

Task
description

Fig. 1: Spatial constraints embedded in an action selection
system. The spatial constraints are solely based on pose
and object type information, feeding relevant contextual
information to an action selection module that may choose
actions variants based on the spatial constraints.

For representing the contextual knowledge, we propose a
set of ranges or constraints over object poses in SE3. These
simply define a parameterizable sub-space of SE3 which we
argue can be used to optimize for better action selection or
parameterization. Such a constraint could for example define
the area in which we have seen specific objects being grasped
or placed.

The scientific contributions of this paper include:

• presentation of a contextual knowledge representation
in the form of constraints in SE3 that can be efficiently
computed online and from only very limited data.

• performance comparison when using the task constraints
on state-of the art pose estimation in different realistic
pick-and-place scenarios.

We have limited our experiments to investigate perfor-
mance on pose estimation actions. The main reason for this
limitation is that we have experienced that state of the art
methods for generic object and pose estimation are becoming
available and that these introduce a performance bottleneck
in industrial pick-and-place tasks. Furthermore, the spatial

978-1-4799-7800-7/15/$31.00 ©2015 IEEE 474

constraints presented in this paper, can be easily exploited
to segment sensor data before doing pose estimation which
drastically reduce running time of pose estimation algo-
rithms.

After presenting the related work in Section II, we outline
in Section III the individual spatial constraints and their
motivation in robotics tasks. Then in Section IV we provide
an overview of our combined system and describe how the
constraint based pose estimation action is able to use con-
straints to improve its performance. In Section V we present
a performance comparison on using our spatial constraints
for optimizing a pose estimation action. We conclude in
Section VI and discuss future directions of work.

II. RELATED WORK

This section provides an introduction to related work on
structures that use constraint specifications and on work that
use and represent contextual information.

Constraint analysis applied to robotics can be split in two
groups: constraints on trajectory [1], [2], [3] and constraints
on object pose [4], [5], [6]. Georgiev et al in [1] considered
trajectory constraint detection using only proprioceptive data,
joint torques of the robot’s arm. In their experiments the
robot exhibited exploratory behavior to learn unconstrained
movement directions and favor these directions in future
movements. Another example of constraint identification on
motion trajectories was covered by Dragan et al. in [2].
Instead of addressing the problem of predicting a good tra-
jectory, they addressed the problem of predicting constraints
on such trajectory. Thus, specifications ”above obstacle” or
”left/right of object” would be translated into constraints
on way-points of a linear trajectory. In [3] a method for
extracting task features based on a notion of variance was
proposed. Its purpose was to indicate variables that vary
within a single demonstration but have little variance across
multiple trials. This method allowed them to determine
task constraints and also to determine a suitable frame of
reference without any prior information.

Analyzing relative object orientations can reveal most
constraints on object poses. Research in this area is done
utilizing either task functions [4], [5] or virtual joints[6]. In
iTaSC [4] the task function is defined over the pose of the
object that is to be manipulated. The virtual joint method
uses a 6-DOF virtual linkage spanned between the object and
the robot’s tool. The coordinate frames are chosen according
to the physics of task that is to be performed: cylindrical
for rotational symmetry, Euler angles for aligning etc. On
the virtual linkage level, the constraints are represented as a
triple of positions, forces and importance weights.

The use of contextual knowledge to accelerate vision tasks
has been investigated in several works. In Neuropsychology
it is known as contextual cueing [7], where contextual
information (spatial layout and object position covariation)
allows humans to perform search tasks faster. Visual cues
could be absent or too numerous, so humans use visual
context to find the most informative objects and regions in
the scene.

A range of experiments performed by Chun and Jiang
in [8] and [9] have proven that contextual cuing can be
driven by spatial configuration information, objects shape
and motion trajectories. In the following study Brady and
Chun [10] have found that contextual cuing from local
context was as strong as that observed from global context if
the local context maintained its location in the overall global
context. This observation corresponds to the assumption that
objects may covary more frequently with items in their local
context than with items in their global context. For instance,
finding a sink in the scene you would limit other expected
nearby objects to dishes and cutlery.

Compared to previous works this paper focuses on in-
dustrial contexts where tasks are often repeated in order
to for example fill up or empty a container. The struc-
tures we have chosen to use are not novel in themselves,
however combining them into and using them as contextual
knowledge is novel. These structures are essentially spatial
object constraints, and their motivation and derivation will
be described next.

III. SPATIAL OBJECT CONSTRAINTS

This section presents a description and definition of our 4
spatial region constraints and their individual justification in
the context of industrial robotics.

Our spatial regions are defined in SE3 and extracted based
on observed (not necessarily using vision) pose information
of individual objects eg. position and orientation of rigid
objects in SE3. There are no assumptions on knowledge of
the geometry of the objects, only pose information and object
labels are available. The regions are defined on single object
types only.

Hence, a spatial region in this work defines a limited space
in SE3 where objects of a specific type have been detected
before or where objects of a specific type are expected to
occur again.

Fig. 2: The four constraint types that we use.

The object pose analysis is initialized by first computing
the stable poses of the object based on the available pose
information. The stable poses are essentially a classification
in orientation SO3 and we will describe exactly what stable
poses are in the context of this paper in Section III-A. We
define 4 different constraint types: point, belt, table and fix-
ture, which are depicted in Fig. 2. All can be categorized as

475

either structured or unstructured, where structured constraints
include only objects of the same type and in the same stable
pose. In the unstructured category the constraints include
objects of the same type regardless of the stable pose.

We introduce stable poses of an object in the next section
Section III-A and thereafter describe the four types of spatial
constraints.

A. The stable pose of an Object

In the configuration space of an object, typically SE3, a
stable pose of an object is ideally a connected subset S, where
all poses in S are stable in the sense that the object will not
move due to gravity, if placed in those poses. An object will
thus mostly have several stable poses. Naturally, stable poses
depends both on object geometry, direction of gravity and
the geometry of the environment on which it is placed. We
denote this supporting environment as the supporting object.

In Fig. 3 the stable poses of a pumphousing are visualized
for a planar supporting object.

Fig. 3: To the left: Illustration of several poses of an object
that belong to the same stable pose. To the right: poses
sampled from 5 different stable poses of a pumphouse.

Stable poses are important spatial hints since these define
a very narrow region in SO3 in which we expect objects
to occur. Take for example the pumphouse from Fig. 3.
Obviously, if we know that the supporting surface is planar
then there is a very limited space in which we expect the
pose to be in. Needless to say this type of information may
be useful in the optimization of pose estimation methods.

In this work we use a reduced definition of stable poses
focusing objects that are subjects to a planar support. In such
a case stable poses can be found by calculating the invariant
rotation axis of the set of object poses. This axis will always
be parallel to the normal of the supporting plane. We can
therefore in this work define stable poses solely based on
the orientation SO3 of an object.

B. Point constraint

Objects placed in a fixture or in a part feeder will always
have the same 6D pose or at least have the same position
in space with the orientation in one of the objects stable
poses. Hence, a set of poses of objects in a fixture should
be constrained to a point in 6D if fully constrained or in 5D
where a single degree of rotation is allowed to define the
stable pose.

Hence, we define a point constraint Cpoint as a point in
R3 for a specific stable pose SC. Any object pose p that is
within a defined distance ε of Cpoint and that belong to the
stable pose SC will be part of the point constraint Cpoint .

Cpoint = {p
∣∣‖−→p t −

−→
C t‖< ε ∧ pR ∈ SC} (1)

where Ct is the position of the constraint point, pt is the
position part of the pose p and pR the orientation part.

C. Belt constraint

The belt constraint Cbelt defines a region where object
poses belonging to the same stable pose SC occur closer than
a defined distance ε from a straight line in R3. This type of
region is often observed on thin conveyor belts or for some
types of part feeders which allows for easier object detection
and picking.

Typically such conveyors are planar and objects on a
conveyor will therefore be limited to the same stable pose
with its position close to the straight line that is parallel to
the conveyor belt movement.

Cbelt = {p
∣∣‖(−→pt −−→v)− ((−→pt −−→v) ·−→s)−→s ‖< ε ∧ pR ∈ SC}

(2)
where v is a point on the line and s is the unit vector
indicating the direction of the line.

D. Table constraint

Objects on wide conveyor belts or on tables are very
common. The table constraint Ctable define a region where
all poses part of the constraint belong to the same stable pose
SC and are closer than a defined distance ε to a plane.

Cplane = {p
∣∣‖(−→v −−→pt) ·−→n ‖< ε ∧ pR ∈ SC} (3)

where −→n is the normal to the plane and −→v is a point on the
plane.

E. Fixture constraint

The last constraint captures another very common struc-
ture of poses that occur in industrial contexts, namely when
objects have been placed in fixtures. Fixtures often constrain
objects into a geometrically ordered set of either 6D or 5D
point constraints.

In this work we limit our definition of geometric order
to when objects are placed in a grid in the plane. The grid
define two distances and directions which define the span of
the grid.

The fixture constraint impose a notion of order. This order
may be helpful in deciding how to execute certain tasks like
grasping or placing. Specifically what of the objects to grasp
or where exactly to place the object can use the ordering
derived with the fixture constraint.

C f ixture = {p|∃n,m ∈ Z : ‖−→pt − (−→v +−→s1 ∗n+−→s2 ∗m)‖< ε}
(4)

where −→v is position vectors of E and ε is a user defined
threshold.

476

Fig. 4: An illustration of the process of determining the pose of an object. The blue boxes are the traditional pose detection
that does not exploit constraints. The green boxes are the addition to the original system that enables the use of derived
constraints.

IV. THE PICK-AND-PLACE SYSTEM

In this section, we present an overview of the system in
which we perform pick-and-place operations. In the context
of this paper, the hardware platform is simulated, and to keep
focus on the performance gain of locating objects we have
chosen to use kinematic simulation of grasping and placing
actions. Hence, the focus in this section is the object pose
detection action and how the constraints may be exploited
by it.

In Fig. 5 we show the basic high level sequence of actions
that perform a pick-and-place task. We define an action to
simply be a component that defines a high level interface to
robot related movements and sensing. We do not use these
actions in a more elaborate framework such as presented in
[11], [12]. However, it should be clear that different imple-
mentations of locate actions are interchangeable. Hence, in
our experimentation we will be using two different locate
actions, one that exploits constraints and one that does not.

The two locate actions are illustrated in Fig. 4. The basic
flow of locating an object is depicted with the blue boxes.
The green boxes indicate the addition that incorporates one
way of using constraints.

The basic flow of the locate algorithm takes as inputs
• Object stable poses - This is essentially a list of the

expected stable poses that objects will belong to. It is
used to remove a significant amount of outliers from the
general object detection and pose estimation routine.

• Object CAD - the geometric description of the object
which is used for object detection and pose estimation.

• Scene point cloud - this is the point cloud image taken
by the sensors of the robot system. It is in this point
cloud image that objects are detected and located.

The pose estimation component does both object detection
and pose estimation of detected objects based on the CAD
model. In this work we consider it as a black box component
which is based on the work in [13].

After the pose estimation all detected object poses are
filtered according to expected stable poses (if any) and the
black listing of previously tried and failed poses. The sample-
verification corresponds to a pick attempt, however, in this
work, we use the ground truth of the simulation to verify the
pose of an object. False-positives are blacklisted in order to
avoid repeated detections of the same false positive. All true-
positive detections of objects are feed to the event-recording
where constraint classification and creation are performed.

The scene-point-cloud is used directly in the pose esti-
mation in the non-constrained based locate action. However,
in the constraint based locate action the scene-point-cloud
is first segmented using the current constraints and then

Locate A

Pick object A from support C
and place it on support B until B is full

Pick A Locate B Place A on B

IsFull?
No

End
Start

Yes

Fig. 5: The basic action sequence that we investigate. The
sequence will be called continuously until some stop criteria
is given.

477

forwarded to the pose-estimation. This is a simple but
effective use of constraints since the size and complexity
of the input point cloud negatively impact the performance
of the pose estimation.

The use of the pose estimation are illustrated on two
scenes in Fig. 6. The segmentation is based on a threshold ε

that simply define that points further away than ε of any
constraint should be removed. For a point constraint this
reduce to keeping all points within a sphere with radi ε and
center in the point defining the constraint. We define distance
as the Euclidean distance in R3 and not SE3, since objects are
already ordered according to their orientation (stable poses).

For this work a fixed ε is used. The ε naturally depends
on the object size which may not be known. Object property
hints on size could be included using pre-defined values.
Alternatively, learning of the ε could be applied by contin-
uously changing ε and performing object detection storing
successful detections and smallest ε .

V. EXPERIMENTAL EVALUATION

In this section the pick-and-place system described that
was just described will be evaluated in a simulated mock-
up of a typical repetitive industrial task. We will demonstrate
how the fairly simple exploitation of constraints in the locate
action is able to significantly speed up the task execution.

First we present the simulated setup and the task. Then in
Section V-B we describe the execution system and the timing
and finally we present the results in Section V-C comparing
repetitive executions with and without exploitation of con-
straints.

A. Setup description

The experimental setup is a simulated setup and it is de-
picted in Fig. 7. The robot is the ”Little Helper 2” developed
at Aalborg University. It includes a mobile platform Neobotix
MP-L655 on which a 6-DOF manipulator (UR6-85-5-a) from
Universal Robots is mounted. Finally, the gripper is a 3-
finger Robotiq-3 gripper mounted on the end effector of the
robot.

The mobile platform is also equipped with a RGB-D cam-
era and a stereo camera. Both camera sensors are mounted
on a 2-DOF servo platform on top of the mobile platform.

Fig. 6: Pose estimation in a full scene (left) and in a
segmented scene (right). The highlighted green object CAD
augmented in the detected pose.

Fixture container for rotorcaps

Belt source of rotorcaps

Fig. 7: To the left: a view of the robot cell. The top right
is a closeup of the fixture in which the rotorcaps can be
placed. In the bottom right a closeup of the conveyor belt
from which rotorcaps arrive into the workspace of the robot.

The task of the robot is to move rotorcaps from the
conveyor belt to the fixture. The robot can activate the
refilling of the conveyor belt when it is not able to find
anymore rotorcaps. The rotorcaps are located on the conveyor
belt and they are all in the same stable pose but with varying
distance between them.

A fixed ε for point, line, table and fixture constraint was
selected to 12cm. This is approximately the same as the
max distance between any two points on the rotorcap and
it allowed for all points of the rotorcap to be detected in the
segmented point clouds.

B. Execution system and timing

The execution system consists of executing four different
actions: locate-without-constraints, locate-with-constraints,
pick-object and place-object. To grasp an object, it is first
located using vision. Then it is picked. To place an object,
a suitable location in which to place the object is required
and vision is used to locate free slots on the fixture before
placing an already grasped object into the fixture.

It should be noted that these pose estimations could be
optimized if we assume that only the robot is changing the
scene and that only predictable changes occur. In such a case
it should be sufficient to locate all (or as many as possible)
objects before the first pick, remembering the position of
all to avoid calling the pose estimation again. However,
failed executions or the existence of human co-workers may
change the scene unpredictably and therefore performing
pose estimations before grasping and placing is necessary.

All actions are executed in the virtual environment. Both
pick and place actions are simulated by simply moving the
object for successful picks or placements. Hence, no actual
motion and grasp planning is performed. Instead we assume
that a successful pick takes 2 seconds which is also the case
for a successful placement.

For failed pick or place action an additional penalty was
added, since systems typically requires additional work in

478

order to recover from a failed pick. This could be due
to unexpected collisions or objects that were toppled over.
A failed pick was classified when an object was located
wrongly by the vision system and the additional cost of a
failed pick was set to 6 seconds.

The vision system grabs RGB-D images in the virtual
scene and use one of the two locate actions to perform pose
estimation and detection of objects. Objects are normally
detected within seconds but the time depends on the size
of the point cloud and the complexity of the scene. Pose
estimation in a reduced point cloud as to the right in Fig. 6,
is typically 5 times faster than pose estimation on a complete
scene as to the left in Fig. 6.

C. Results

The pick-and-place process described in the previous sec-
tion V-B was used to test the performance of the constraint
based locate action. The task was to fill up the fixture with
rotorcaps from the conveyor belt. Initially 8 rotorcaps where
placed randomly on the conveyor belt. A refilling of the
conveyor belt is performed when no more rotorcaps are
detectable by the system. The refiling introduce eight new
rotorcaps randomly placed on the conveyor. There are no
simulated time penalties added due to the re-filling.

The task of filling up the fixture from the same initial
starting point was repeated 10 times for both locate actions
without constraints and locate with constraints. The perfor-
mance is depicted in Fig. 8 where each iteration (x-axis)
is a pick-and-place attempt suggesting either a successful
or failed pick-and-place operation. The time each pick-and-
place operation took are plotted in the y-axis.

Both graphs start in the same point, meaning in the first
pick-and-place action both methods are equally fast. This is
not surprising since in the first iteration no constraints have
been derived yet and the constraint based method will then
default to use the pose estimation on the complete scene.
After the first pick-and-place action the constraint based
locate is already faster because it applies a point constraint
and successfully locates a rotorcap in the segmented point
cloud.

In spite of fluctuations in the time estimates it is obvious
that the constraint based detection is roughly 2 seconds or
25% faster than the non-constraint based detection. The peak
at the 11’th iteration is due to a large number of false-positive
detections of free spots on the fixture. The object detection
confuses rotorcaps with empty place holders when the fixture
is nearly filled with rotorcaps. This eventually gives a large
number of false positives that impact performance negatively.

Fig. 8: Performance of pick-and-place system both with and
without the use of constraints. The red indicate pick-and-
place actions with generic locate action. The blue indicate
pick-and-place actions that exploit constraints.

The accumulated time of the locate actions are presented
in Fig. 9. The non-constraint based locate is depicted to the
left and it spends time in two categories:
• scene success - time spend in successfully locating

objects.
• scene failures - time spend in faulty pose estimation of

objects.
Evidently a majority of the time is spend on successfully

locating objects. The constraint based locate action adds two
additional categories.
• constraint success - time spend in successfully locating

objects when using constraints for segmentation.
• constraint failures - time spend in faulty pose estimation

of objects using constraints for segmentation.
Time spend in these two categories are depicted to the left

in the figure. The constraint based locate action will spend
time in all four categories. It does so since the non-constraint
based pose estimation is used as a fall back in case no objects
are detected when using constraints. The figure was compiled
over 19 pick-and-place executions and it suggests that the
constraint based locate action is almost twice as fast as the
non-constraint based locate. There are a larger amount of
failed pose estimations for the constraint pose estimation,
however, the speedup in successful pose estimations easily
compensates.

VI. CONCLUSION

In this work we presented a set of simple constraints
defining regions in SE3. We argued that based on labeled
object poses alone, we were able to quickly and efficiently
derive these constraints. Furthermore we demonstrated that
the constraints could be actively used to optimize a pose
estimation action by using the constraints for directly seg-
menting the observed sensor data.

479

Fig. 9: The accumulated time over 19 executions of locate
actions. The left bar show accumulated time of the non-
constraint based locate action. The right bar show accumu-
lated time of the constraint based locate action.

We demonstrated that the constraints significantly in-
creases execution performance after only few pick-and-place
operations and that the overall performance improvement
when using rough time estimates on pick and place actions
was close to 150% eg. the area between the red and blue
curve in Fig. 8. Furthermore, a performance gain of roughly
200% was observed of the constraint based locate over
the non-constraint based locate. Notably, the performance
was only investigated in a single scenario. This benchmark
should be expanded including a broader set of pick-and-place
scenarios in the future.

Future work should also include investigating how to
enrich the current representation with knowledge such as
gravity, observed supporting surfaces and a measure on how
cluttered the support is.

Furthermore, the constraints presented in this paper could
be used to remove outliers in pose detection when specific
constraints in an observed world is either expected or known.
Such an approach holds promises for removing outliers di-
rectly from object detection data by using the representation
to predict the most likely locations of objects in a scene.

Finally, the exploitation of constraints should be integrated
into more actions such as the pick and the place actions.
Allowing for even further performance improvements.

Acknowledgments

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme FP7/2007-2013 (Programme and Theme: ICT-
2011.2.1, Cognitive Systems and Robotics) under grant
agreement no. 600578, ACAT.

The research has furthermore received founding from
the Danish project Patient@home which is funded as a
strategic platform for innovation and research by the Danish
Innovation Fond.

REFERENCES

[1] Veselin Georgiev, Todd Wegter, Ramy Sweidan, Vladimir Sukhoy,
and Alexander Stoytchev. Learning to detect spatial regions with
constraints.

[2] Anca Dragan, Geoffrey J Gordon, and Siddhartha Srinivasa. Learning
from experience in manipulation planning: Setting the right goals.
2011.

[3] Lucia Pais, Keisuke Umezawa, Yoshihiko Nakamura, and Aude Bil-
lard. Learning robot skills through motion segmentation and con-
straints extraction. In HRI Workshop on Collaborative Manipulation,
2013.

[4] Ruben Smits, Tinne De Laet, Kasper Claes, Herman Bruyninckx, and
Joris De Schutter. itasc: a tool for multi-sensor integration in robot
manipulation. In Multisensor Fusion and Integration for Intelligent
Systems, 2008. MFI 2008. IEEE International Conference on, pages
426–433. IEEE, 2008.

[5] Joris De Schutter, Tinne De Laet, Johan Rutgeerts, Wilm Decré,
Ruben Smits, Erwin Aertbeliën, Kasper Claes, and Herman Bruyn-
inckx. Constraint-based task specification and estimation for sensor-
based robot systems in the presence of geometric uncertainty. The
International Journal of Robotics Research, 26(5):433–455, 2007.

[6] Ingo Kresse and Michael Beetz. Movement-aware action controlinte-
grating symbolic and control-theoretic action execution. In Robotics
and Automation (ICRA), 2012 IEEE International Conference on,
pages 3245–3251. IEEE, 2012.

[7] Marvin M Chun. Contextual cueing of visual attention. Trends in
cognitive sciences, 4(5):170–178, 2000.

[8] Marvin M Chun and Yuhong Jiang. Contextual cueing: Implicit learn-
ing and memory of visual context guides spatial attention. Cognitive
psychology, 36(1):28–71, 1998.

[9] Marvin M Chun and Yuhong Jiang. Top-down attentional guidance
based on implicit learning of visual covariation. Psychological Science,
10(4):360–365, 1999.

[10] Timothy F Brady and Marvin M Chun. Spatial constraints on learning
in visual search: modeling contextual cuing. Journal of Experimental
Psychology: Human Perception and Performance, 33(4):798, 2007.

[11] Joanna J Bryson. Action selection and individuation in agent based
modelling. In Proceedings of agent, pages 317–330, 2003.

[12] Michael Beetz, Lorenz Mosenlechner, and Moritz Tenorth. Crama
cognitive robot abstract machine for everyday manipulation in hu-
man environments. In Intelligent Robots and Systems (IROS), 2010
IEEE/RSJ International Conference on, pages 1012–1017. IEEE, 2010.

[13] Anders Glent Buch, Dirk Kraft, Joni-Kristian Kamarainen, Hen-
rik Gordon Petersen, and Norbert Kruger. Pose estimation using
local structure-specific shape and appearance context. In Robotics and
Automation (ICRA), 2013 IEEE International Conference on, pages
2080–2087. IEEE, 2013.

480

Powered by TCPDF (www.tcpdf.org)

