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Abstract— Dynamic movement primitives (DMPs) were pro-
posed as an efficient way for learning and control of complex
robot behaviors. They can be used to represent point-to-point
and periodic movements and can be applied in Cartesian or
in joint space. One problem that arises when DMPs are used
to define control policies in Cartesian space is that there exists
no minimal, singularity-free representation of orientation. In
this paper we show how dynamic movement primitives can
be defined for non minimal, singularity free representations of
orientation, such as rotation matrices and quaternions. All of
the advantages of DMPs, including ease of learning, the ability
to include coupling terms, and scale and temporal invariance,
can be adopted in our formulation. We have also proposed
a new phase stopping mechanism to ensure full movement
reproduction in case of perturbations.

I. INTRODUCTION

With a focus on specifying goal directed robot behaviors,
Ijspeert et al. [1], [2] proposed to model robot movements
with dynamic movement primitives (DMPs). In their basic
form, DMPs consist of a linear second order attractor system
(differential equation) with the added nonlinear forcing term,
which is applied to adapt the simple second order attractor
dynamics to the specific robot movement. DMPs can be
used to represent both periodic and discrete (point-to-point)
movements. They have many favorable properties, e. g. they
contain open parameters that can be used for learning without
affecting the overall convergence and stability of the system,
they can control timing without requiring an explicit time
representation, they are robust against perturbations and can
be modulated to adapt to different requirements.

While methods used for trajectory planing in joint space
can often also be used in Cartesian space, the planing
of orientation trajectories is sometimes more complicated.
Unlike position, which can be represented by a 3-D vec-
tor, the robot’s orientation cannot be represented this way
because the set of all orientations, which we denote by
SO(3), is not a vector space. SO(3), however, is a group
and a real three dimensional manifold [3]. While SO(3)
can be parameterized by three parameters, e. g. Euler angles,
such parameterizations always contain singularities. It turns
out that there exists no minimal (3-D) representation of
orientation that 1. contains no singularities, i. e., a continuous
orientational motion in 3-D space is continuous also in the
3-D parameter space, and 2. is continuously differentiable,
i. e. the partial derivatives of the parameters with respect to
any differential rotation, at any orientation, are finite.
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It is preferable to use parameterizations that do not intro-
duce artificial discontinuities not existing in the real world
into trajectory planing. As outlined above, such represen-
tations of orientation are non minimal and must therefore
fulfill additional constraints in a higher dimensional space
to be guaranteed to lie on the constraint manifold. This
causes problems when integrating differential equations on
SO(3) because general integration methods do not have any
information about the structure of SO(3) and can cause the
integrated parameters to depart from the constraint manifold.

In this paper we first propose a new approach that avoids
integrating the orientation parameters directly and is there-
fore guaranteed to generate parameters that lie in SO(3). The
proposed method can use either rotation matrices or quater-
nions. We compare it to the approach previously proposed
in [4] and point out the difference between quaternion and
rotation matrix based approach. We then show that different
extensions of DMPs regarding modulation and coupling
can be adopted for orientation DMPs and propose a new
approach to phase stopping in case of external perturbations.

II. MOVEMENT REPRESENTATION IN CARTESIAN SPACE

The basic idea of dynamic movement primitives (DMPs)
is to model movements by a system of differential equa-
tions with well understood stability properties. This system
should ensure the desired behavior, e. g. convergence to the
specified attractor point [1], [2]. A nonlinear forcing term,
which allows the modeling of more complex movements,
is added to the basic system of differential equations. A
DMP for a single degree of freedom point-to-point movement
y is defined by the following set of nonlinear differential
equations [1]

τ ż = αz(βz(g − y)− z) + f(x), (1)
τ ẏ = z, (2)

where x is the phase variable, z is the scaled velocity of the
movement, g is the desired final position on the movement,
and f is a nonlinear forcing term. With the choice τ > 0
and αz = 4βz , the linear part of equation system (1) – (2)
becomes critically damped and y, z monotonically converge
to a unique attractor point at y = g, z = 0 [1]. f(x) is defined
as a linear combination of N nonlinear radial basis functions,
which enables the robot to follow any smooth trajectory from
the initial position y0 to the final configuration g

f(x) =

∑N
i=1 wiΨi(x)∑N
i=1 Ψi(x)

x(g − y0), (3)

Ψi(x) = exp
(
−hi (x− ci)2

)
. (4)



ci are the centers of Gaussians distributed along the phase
of the movement and hi their widths. The phase x has been
introduced to avoid explicit time dependency. Its evolution
follows the first order linear dynamics

τ ẋ = −αxx, (5)

where αx > 0 and x(0) = 1. For a given N and setting the
time constant τ equal to the total duration of the desired
movement, we can define ci = exp

(
−αx

i−1
N−1

)
, hi =

1

(ci+1 − ci)2
, hN = hN−1, i = 1, . . . , N . For each Cartesian

degree of freedom, the weights wi should be adjusted so that
the desired behavior is achieved. To control a robot with more
than one degree of freedom, we represent the trajectory of
every degree of freedom with its own equation system (1) –
(2), but with the common phase (5) to synchronize them.

A. Rotation Matrix Based DMPs

The basics for the developments in this section are pro-
vided in Appendix I. To fully describe a movement of the
robot’s end effector in Cartesian space, we can specify its po-
sition trajectory p(t) ∈ R3 and orientation trajectory R(t) ∈
R3×3. Each of the 12 parameters could be represented by
its own DMP system (1) – (2). However, the coefficients of
the orientation trajectory R(t) are not independent of each
other, thus if we integrate them independently, the integrated
rotation matrix will gradually start deviating from the true
rotation matrix. We therefore reformulate Eq. (1) – (2) as
follows

τη̇ηη = αz(βz log(RgR
T)− ηηη) + fo(x). (6)

τṘ = [ηηη]×R, (7)

where Rg denotes the goal orientation. The motivation to
write (2) as (7) is provided by Eq. (40) from Appendix I.
Thus ηηη is just the scaled angular velocity ωωω. The motivation
for (6) is the fact that, as evident from Eq. (44), ωωω =
log(RgR

T) corresponds to the angular velocity that rotates
matrix R into the goal orientation Rg within the unit time.
This is equivalent to the difference g − y in (1), which
computes the linear velocity that translates parameter y to
g within the unit time. See Appendix I for more details
about rotation matrix logarithm and its relation to the angular
velocity. The nonlinear forcing term

fo(x) = Do

∑N
i=1 w

o
i Ψi(x)∑N

i=1 Ψi(x)
x (8)

contains free parameters wo
i ∈ R3, which need to be

determined to follow any given rotation trajectory. The data
for computing them is usually gathered by sampling along
the trajectory, where the trajectory is obtained either by
human demonstration or by guiding the robot arm through
a desired trajectory and recording the resulting orientations
Rj , velocities ωωωj , and accelerations ω̇ωωj at sampling times tj .
The parameters wo

i are calculated by solving the following

system of linear equations, which we obtain from (6)∑N
i=1 w

o
i Ψi(xj)∑N

i=1 Ψi(xj)
xj =

D−1
o

(
τ η̇ηηj + αzηηηj − αzβz

(
log
(
RgR

T
j

)))
,

(9)

where phases xj are calculated by integrating (5), i. e.

xj = x(tj) = exp
(
−αx

τ
tj

)
(10)

and j = 0, . . . , T . The relation between the rotation matrix
derivative and angular velocity is given by (40), thus from
(7) we obtain [ηηη]× = τ [ωωω]×, which means that ηηηj = τ ωωωj ,
η̇ηηj = τ ω̇ωωj . The scaling factor Do = diag

(
log
(
RgR

T
0

))
∈

R3×3 is a diagonal matrix built from a 3-D vector, where
the coefficients of the vector are used to define the diagonal
elements of the matrix. The modulation by Do leads to
useful scaling properties of the DMP system when the goal
configuration go and consequently the amplitude of the
movement change (see also Section V).

Standard Euler formulas can be applied to integrate (6).
To integrate (7) we use the expression obtained from (44)

R(t+ ∆t) = exp

(
∆t

[ηηη]×
τ

)
R(t), (11)

which is guaranteed to generate a rotation matrix because the
exponential map exp (∆t[ηηη]×/τ) results in a rotation matrix
and the product of two rotation matrices is a rotation matrix.

B. Position Trajectories

For the sake of completeness we also rewrite DMP equa-
tions (1) – (2), which are used to encode the positional part
of the trajectory, in vector form

τ ż = αz(βz(gp − p)− z) + fp(x), (12)
τ ṗ = z, (13)

where gp ∈ R3 denotes the final position on the recorded
trajectory. The forcing term fp is defined as

fp(x) = Dp

∑N
i=1 w

p
i Ψi(x)∑N

i=1 Ψi(x)
x, (14)

where Dp = diag (gp − p0) ∈ R3×3. As mentioned above,
the diagonal matrices Dp in (14) and Do in (8) are used
to scale the movement amplitude if the goal configuration
gp and/or go change. To track the desired Cartesian space
trajectories, we need to integrate (12) – (13) and (6) – (7)
along with the common phase (5).

Given the robot tool center point trajectory {pj , ṗj , p̈j ,
tj}Tj=0, the free parameters can be calculated in a similar way
as in (9), i. e. by first rewriting (12) – (13) as one second
order differential equation [1] and then solving the resulting
system of linear equations∑N

i=1 w
p
i Ψi(xj)∑N

i=1 Ψi(xj)
xj =

D−1
p

(
τ2 p̈j + αzτ ṗj − αzβz (gp − p)

)
,

(15)

where the phases xj are calculated as in (10).



III. QUATERNION BASED DMPS

An alternative to rotation matrices is provided by unit
quarternions q = v + u ∈ S3, where S3 is a unit sphere in
R4, v ∈ R, u ∈ R3. Quaternions also provide a singularity-
free, non minimal representation of the orientation, but with
only four parameters compared to nine of rotation matrices.
They have been utilized to represent orientation in various
contexts including robot control [5], trajectory modeling
[6], and tracking [7], [8]. This representation is not unique
because unit quaternions q and −q represent the same
orientation. We can transform the rotational DMP equations
(6) – (7) into the quaternion form as follows

τη̇ηη = αz (βz2 log (go ∗ q)− ηηη) + fo(x), (16)

τ q̇ =
1

2
ηηη ∗ q, (17)

where go ∈ S3 denotes the goal quaternion orientation, bar
denotes the quaternion conjugation defined as q = v + u =
v − u, and ∗ denotes the quaternion product

q1 ∗ q2 = (v1 + u1) ∗ (v2 + u2) (18)
= (v1v2 − uT

1 u2) + (v1u2 + v2u1 + u1 × u2).

ηηη ∈ R3 is treated as quaternion with 0 scalar part in (17).
The quaternion logarithm log : S3 7→ R3 is defined as [7]

log(q) = log(v + u) =

 arccos(v)
u

‖u‖
, u 6= 0

[0, 0, 0]T, otherwise

. (19)

The basis for the above equations is provided by the facts that
firstly, given two unit quaternions q1 and q2 specifying two
different orientations, the rotation from q1 to q2 is specified
by ∆q = q2 ∗ q1, and secondly, by formula (23). Unlike
with rotation matrices (see Appendix I), the logarithmic
map defined on S3 has no discontinuity boundary, just a
singularity at a single quaternion q = −1 + [0, 0, 0]T. It can
be used to specify a distance metric on S3 [7]

d(q1,q2) ={
2π, q1 ∗ q2 = −1 + [0, 0, 0]T

2‖ log(q1 ∗ q2)‖, otherwise
.

(20)
Note that d is not a metric on SO(3) because d(q,−q) = 2π,
although q, −q represent the same orientation. The nonlinear
forcing term fo is defined as in (8). It contains free parameters
wo

i ∈ R3, which can be used to encode any sampled ori-
entation trajectory {qj , ωωωj , ω̇ωωj , tj}Tj=0 with the quaternion
based DMP defined by (16) – (17) and (5). Parameters wo

i are
obtained by solving the following system of linear equations∑N

i=1 w
o
i Ψi(xj)∑N

i=1 Ψi(xj)
xj =

D−1
o

(
τ η̇ηηj − αz

(
βz2 log

(
go ∗ qj

)
− ηηηj

))
,

(21)

where phases xj are obtained as in (10). The relation between
the quaternion derivative and angular velocity is given by
q̇ = 1

2 ωωω∗q, thus from (17) we obtain ηηηj = τ ωωωj , η̇ηηj = τ ω̇ωωj .

Unlike in our work, Pastor et al. [4] used in Eq. (16) just
the vector part of the quaternion product v + u = go ∗ q,
i. e. u ∈ R3, instead of 2 log (go ∗ q). A similar type of error
was used also in [9]. Defining u = vec (go ∗ q), their system
can be written as

τη̇ηη = αz (βzvec (go ∗ q)− ηηη) + fo(x). (22)

While this is equivalent as far as the direction of change
is concerned, such a formulation does not fully take into
account the geometry of SO(3). It holds namely

ωωω = 2 log (go ∗ q) , (23)

where ωωω denotes the angular velocity that rotates quaternion
q into go within unit time. Thus only the logarithmic map
multiplied by 2 can provide proper mapping of the quaternion
product go ∗ q onto the angular velocity. Another difference
is that there is no scaling factor Do in [4]. See Section V
for the analysis of differences between the two approaches.

For the integration of (17) we can use the formula

q(t+ ∆t) = exp

(
∆t

2

ηηη(t)

τ

)
∗ q(t). (24)

This is the quaternion version of (11), where the quaternion
exponential is defined as [7]

exp(r) =

 cos (‖r‖) + sin (‖r‖) r

‖r‖
, r 6= 0

0, otherwise

(25)

If we limit the domain of the exponential map exp : R3 7→
S3 to ‖r‖ < π and the domain of the logarithmic map to
S3/(−1 + [0, 0, 0]T), then both mappings become one-to-
one, continuously differentiable and inverse to each other.

IV. MODULATIONS OF ORIENTATION DMPS

One of the major advantages of DMPs is that various
useful behaviors can be achieved by manipulating the under-
lying differential equation systems. In this section we address
the issue of phase stopping, goal switching, and robustness
against perturbations in the context of quaternion based
DMPs. The derivations for rotation matrices are equivalent.
The extensions in this section are applied only during the
execution of the movement. In the training phase, the original
DMP equations should be used.

A. Phase Stopping

The reason for expressing the phase with a differential
equation is that its time evolution can be manipulated through
this differential equation. In contrast, an explicit time rep-
resentation cannot be manipulated as easily [2]. For DMP
phase stopping [10], the original equation for phase (5) can
be replaced with

τ ẋ = − αxx

1 + αpx (‖p̃− p‖+ γ d(q̃,q))
, (26)

where ‖p̃−p‖+γ d(q̃,q) is the trajectory tracking error, p̃
and q̃ are the actual position and orientation of the tool center
point, respectively, and p and q the corresponding DMP



control outputs. Note that in the case of large tracking errors,
the error value ‖p̃ − p‖ + γ d(q̃,q) becomes large which
in turn makes the phase change ẋ small. Thus the phase
evolution is stopped until the robot reduces the tracking error.
Ijspeert et al. [10] proposed to modify also Eq. (2) to ensure
faster error reduction

τ ẏ = z + αpy(ỹ − y), (27)

where ỹ denotes the actual position of the robot and y the
DMP calculated position. In the context of Cartesian space
DMPs, Eq. (27) becomes different for the positional and
orientational part of the trajectory, which are respectively
encoded by Eq. (13) and (7). We obtain

τ ṗ = z + αpp(p̃− p), (28)

τ q̇ =
1

2
(ηηη + αpr2 log (q̃ ∗ q)) ∗ q, (29)

Eq. (29) is integrated using a formula analog to (24).

B. Goal Switching
When the goal orientation go is switched to a new ori-

entation, the discontinuity that arises in log(go ∗ q) used in
(16) causes a discontinuity in the angular acceleration ω̇ωω.
For the standard DMPs, Ijspeert et al. [1] suggested to avoid
this discontinuity by adding an additional equation to the
differential equation system (1) – (2), which causes the goal
g in (1) to smoothly transition to the new goal g0

τ ġ = αg(g0 − g). (30)

Note that what used to be a constant g is now a continuous
variable, while g0 can change discontinuously, based for
example on the external sensory information. In the context
of quaternion based DMPs, this equation becomes

τ ġo = αgo log(go,new ∗ go) ∗ go. (31)

Equivalently to g in (30), go is now a variable that continu-
ously transitions to a new goal go,new. Equation (31) should
be integrated together with (16) – (17) using formula (24).

C. Robustness to Perturbations through Coupling of DMPs
Another advantage of DMPs is that they are robust against

perturbations [1], e. g. when a robot is physically pushed
away from the desired trajectory while moving. The standard
approach to perturbations is to simply continue integrating
Eq. (5), (16) – (17) after the perturbation has arisen. This
way the robot gradually returns to the desired trajectory.
However, this approach does not ensure that the complete
movement is reproduced, just that the robot returns to the
original movement. We propose to apply the phase stopping
mechanism when it is necessary to execute the complete
movement. For this purpose we enhance Eq. (26), (28), (29)
as follows

τ ẋ = − αxx

1 + αpxε(p̃,pd,p, q̃,qd,q)
, (32)

τ ṗ = z + αpp(p̃ + pd − 2p), (33)

τ q̇ =
1

2
(ηηη + αpr2 (log (q̃ ∗ q) + log (qd ∗ q))) ∗ q,

(34)

where

ε = ‖p̃− p‖+ ‖pd − p‖+ γ (d(q̃,q) + d(qd,q)) ,

pd and qd are the desired position and orientation, respec-
tively, and all other variables and constants are as in (26),
(28), (29). The unit quaternion distance metric d is defined in
(20). The complete approach to control the robot is specified
by the following coupled DMP system

• A DMP system obtained by adding (16), (12) to (33) –
(34). Its outputs are used to generate motor commands.

• A separate DMP that uses standard DMP equations (16)
– (17) and (12) – (13) with the same constants and
variables as the above system. This DMP generates the
desired position and orientation for (33) – (34).

• The coupling of both DMP systems occurs through the
phase equation (32), which is used by both.

The proposed coupled system halts the phase evolution
whenever the robot controller is unable to track the com-
manded position and orientation or whenever the commanded
position and orientation deviate from the desired values. The
second term in (33), (34) ensures that the system can recover
once the perturbation is removed. After recovery the robot
continues to perform the movement at the spot on the trajec-
tory where it was before the onset of perturbation. Note that
the original DMP system is equivalent to the one proposed in
this section if the robot tracks the desired trajectory perfectly
and there are no unexpected perturbations.

V. EXPERIMENTAL RESULTS

We start by comparing the performance of the quaternion
based DMPs to the method of Pastor et al. [4], which uses the
quaternion difference vector vec (go ∗ q) as in (22), instead
of 2 log (go ∗ q) as in (16). Fig. 1 and 2 show that our newly
developed approach converges to the attractor point much
faster than the approach proposed in [4], which is the desired
characteristics of the linear part of the DMP system that
should ensure convergence to the attractor point. Part of the
reason for this is the lack of multiplication by 2 in (22). If
we modify (22) to

τη̇ηη = αz (βz2vec (go ∗ q)− ηηη) + fo(x), (35)

the DMP system (16) – (17) still generates a significantly
quicker response than (35), (17), and converges faster, but
the difference is smaller, as we can see by comparing
Fig. 1 and 3. Nevertheless, the response of (16) – (17) is
clearly preferable. Fig. 1 and 4 show that as expected, the
quaternion based DMP (16) – (17) and the rotation matrix
based DMP (6) – (7) generate exactly the same response
in terms of angular velocity. In this experiment, we set
q0 = 0.3717 + [−0.4993,−0.6162, 0.4825]T as a starting
orientation and go = 0.2471 + [0.1797, 0.3182,−0.8974]T

as the goal orientation. The other constants were specified
as follows: αx = 2, αz = 48, βz = 12, τ = 3.5.

We have thus shown theoretically and experimentally that
the proposed systems (6) – (7) and (16) – (17) are signifi-
cantly better than (35), (17), even though the multiplication
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Fig. 1. Response of the DMP system (16) – (17) without nonlinear term
fo (this paper). The upper graph shows the time trajectories of the four
unit quaternion components, and the lower graph the time trajectories of
the three components of the angular velocity.
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Fig. 2. Response of the DMP system (22), (17) with quaternion difference
instead of the logarithmic map and without nonlinear term fo (Pastor et al.
[4]).
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Fig. 3. Response of the DMP system (35), (17) with double quaternion
difference instead of the logarithmic map and without nonlinear term fo.
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Fig. 4. Response of the rotation matrix based DMP system (6) – (7) without
nonlinear term fo. The upper graph shows the time trajectories of the nine
rotation matrix components, and the lower graph the time trajectories of the
three components of the angular velocity.

by 2 has been added compared to the system (22), (17)
from [4]. Note that 2 is the correct multiplier to obtain a
critically damped system in (16) – (17). If we further increase
the multiplier, the resulting system is not critically damped
but starts oscillating towards the goal orientation, which is
suboptimal for robot control.

In the next experiment we tested the approximation of the
desired trajectories. We used exactly the same parameters
as above except for τ , which was set to 1.5. To generate
an example orientation trajectory we sampled a minimum
jerk polynomial between start and end quaternion q0 and
go, respectively, and normalized the resulting quaternion
trajectory. The results shown in Fig. 5 and 6 demonstrate that
both approaches can accurately reproduce the desired trajec-
tories. But this experiment also showed that there is a subtle
issue that one should be aware of when using the rotation
matrix based DMPs. Namely, the rotation matrix logarithm as
defined in (43) has a discontinuity at ‖ log(R)‖ = π. This
causes problems when estimating DMPs through equation
system (9) because fo can become discontinues when this
boundary is crossed, even though the movement itself is not.
As evident from Fig. 5, it is possible to resolve this problem
by adding the appropriate constants to ensure the continuity
of fo in (6). On the other hand, the quaternion based
DMPs do not suffer from this problem because there is no
discontinuity boundary for quaternion logarithm (19) on the
unit sphere S3. The only singularity is at q = −1+[0, 0, 0]T,
which is rarely or never hit in practice and can also easily be
dealt with (for example, by assuming the previous direction
vector in the logarithm when −1 + [0, 0, 0]T is reached on
the trajectory). For this reason we prefer to use quaternion
representation to avoid the rather tedious bookkeeping issues.

Fig. 7 shows the performance of the phase stopping
procedure described in Section IV-A. All parameters were
the same as in the previous experiment except for τ , which
was set to 2.5. As with standard DMPs, when the movement
is stopped due to an external perturbation, the proposed
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Fig. 5. Reproduction of the desired minimum jerk polynomial with the
rotation matrix based DMP system (6) – (7).
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Fig. 6. Reproduction of the desired minimum jerk polynomial with the
quaternion based DMP system (16) – (17)

approach halts the phase for the duration of the perturbation.
Once the perturbation is removed, the trajectory quickly
recovers – aided by the additional term in Eq. (29) – without
any jumps. While such a behaviour could be realized with
more standard techniques like splines, DMPs can achieve it
without any bookkeeping regarding the timing and control
of the desired movement. Simply integrating Eq. (26), (28),
and (29) is enough to generate the appropriate response to
the "movement stop" perturbation.

The response of the system to the goal change is shown
in Fig. 8. Compared to the original movement of Fig. 6, the
form of movement has been quite well preserved despite a
fairly large change of the goal orientation. As expected, the
change is larger in the angular velocity than in the quaternion
trajectory. In all our experiments, the system (16), (17),
(31) reliably converged to the new goal. The shape of the
movement was also preserved most of the time, but in general
the robustness of shape preservation was somewhat lower
than in the case of position trajectories. The main reason for
this is the more complicated geometry of SO(3) compared
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Fig. 7. The effects of phase stopping on quaternion based DMPs defined
by (26), (28), (29). The original, unperturbed trajectory is indicated with
the dashed lines, and the perturbed movement, which was stopped between
0.9 and 1.4 seconds, with full lines.
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Fig. 8. Response of the DMP system (16), (17), (31) to the switching
of goal orientation during the movement. The goal of the movement was
changed at 0.4 seconds. The change of goal orientation corresponded to a
rotation of 30.4 degrees. The original movement is shown in Fig. 6.

to the Euclidean space.
In the final simulation experiment we showed the robust-

ness of the newly proposed phase stopping mechanism to
sudden perturbations. As shown in Fig. 9, if we simply
continue integrating the DMP equations (16), (17) after a
perturbation, the movement converges back to the original
movement and attains the desired goal orientation. However,
the desired trajectory is not reproduced in its entirety. The
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Fig. 9. Response of the DMP system (16), (17) to a perturbation. Here the
orientation trajectory was perturbed by rotation of 28.3 degrees. The angular
velocity was simultaneously set to 0. The graph shows the convergence of
the perturbed movement to the final goal orientation.

Fig. 10. Humanoid robot CBi [11] while following a Cartesian space DMP
with its right arm.

complete movement reproduction can be achieved by the
proposed coupled phase stopping DMP of Section IV-C. Fig.
11 shows that with this system the phase is stopped after
the perturbation, which occurs due to large discrepancies
between the desired and actual orientation on the trajectory.
The robot thus has time to recover from the perturbation
and return back to the desired trajectory, which is provided
by the coupled DMP. Once the commanded orientation is
close enough to the desired orientation, the robot resumes
moving along the desired trajectory until it reaches the final
configuration. Which of the two behaviors is more favorable
depends on the requirements of the task.

We have also tested the proposed DMP system on a real
robot. The generated trajectory is shown in Fig. 12.

VI. CONCLUSION

In this paper we proposed a new approach to specify
orientation in Cartesian space dynamic movement primitives.
The main contributions are
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Fig. 11. Response of the phase stopping DMP (16), (34), (32) coupled
with the standard DMP (16), (17) to the same perturbation as in Fig. 9. The
graph shows the recovery of the movement back to the desired movement,
which was the same as in Fig. 6.
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Fig. 12. Response of the DMP system on a real robot.

• The application of logarithmic map to represent ori-
entation difference in Cartesian space DMPs based on
quaternions or rotation matrices (see Section II and III).
The newly proposed system has significantly better at-
tractor properties than the previously proposed approach
based on the quaternion difference vector.

• Theoretical and experimental analysis that showed that
quaternion based DMPs are easier to use than rotation
matrix based DMPs due to the discontinuity boundary
that exists for the logarithmic map defined on rotation
matrices, which does not exist for the logarithmic map
defined on the space of unit quaternions.



• The formulation of many standard DMP extensions
(phase stopping, goal switching, scaling) for the case of
quaternion based DMPs with logarithmic map (Section
IV). These extensions were previously not formulated
for orientation movement planing with DMPs.

• A new formulation of phase stopping coupled with stan-
dard DMPs to enable a robot to resume its movement in
case of unexpected perturbations (Section IV-C). This
contribution is not limited to quaternion based DMPs
but applies to DMPs in general.

APPENDIX I
ROTATION MATRIX AND EXPONENTIAL MAP

The most standard way to represent rotational motion
in R3 is through rotation matrices, which provide a nine-
dimensional parametrization of SO(3)

SO(3) =
{
R ∈ R3×3, RTR = I, det(R) = 1

}
. (36)

Every orientation can be identified with a unique R ∈ SO(3).
Thus any orientation trajectory can be written as a function
R(t) ∈ SO(3), 0 ≤ t ≤ T. The rotational motion of any
point p ∈ R3 attached to the robot’s end-effector is given by
p(t) = R(t)p0. The derivative of p(t) is equal to

ṗ(t) = Ṙ(t)p0 = Ṙ(t)RT(t)p(t). (37)

By definition of angular velocity ωωω we also have

ṗ(t) = ωωω(t)× p(t) = [ωωω]×(t)p(t), (38)

[ωωω]× =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 . (39)

Note that [ωωω]× is a skew symmetric matrix, i. e. [ωωω]T× =
−[ωωω]×. Since (37) and (38) are true for any p(t), we obtain

[ωωω]× = ṘRT . (40)

This differential equation provides the basis for the definition
of orientational DMPs.

If ωωω is constant, then (38) can be solved analytically

p(t) = exp (t[ωωω]×)p0 = exp

(
θ(t)

[ωωω]×
‖ωωω‖

)
p0, (41)

were θ(t) = t‖ωωω‖ denotes the rotation angle within time t.
The exponential map

exp (t[ωωω]×) = I + sin(θ)
[ωωω]×
‖ωωω‖

+ (1− cos(θ))
[ωωω]2×
‖ωωω‖2

(42)

is commonly referred to as Rodrigues’ formula [3]. It can be
shown that the net rotation R(t) = exp (θ(t)[ωωω]×/‖ωωω‖) is
a rotation matrix, i. e. exp (t[ωωω]×) ∈ SO(3). Furthermore, it
can be shown that given any R ∈ SO(3), there exists ωωω ∈ R3

so that R = exp ([ωωω]×) [3]. The components of ωωω are called
exponential coordinates of R. This representation is often
referred to as axis-angle representation of orientation. It is
unique if we limit the domain of ωωω to 0 ≤ ‖ωωω‖ < π. Hence
we can compute its inverse, i. e. the logarithmic map

log(R) =

{
[0, 0, 0, ]T, R = I
ωωω = θn, otherwise

, (43)

θ = arccos

(
trace(R)− 1

2

)
, n =

1

2 sin(θ)

 r32 − r23
r13 − r31
r21 − r12

 .
To represent all orientations we need to allow also θ = π.
At θ = π there are always two solutions: ±πn and −πn.
Numerically stable formulas to compute the exponential co-
ordinates are given in [12]. However, there is a discontinuity
in the logarithmic map at rotation matrices corresponding
to rotation angles θ = π because at this boundary, the
logarithmic map switches from positive to negative rotation
angles. Since exp([log(R)]×) = R, we obtain

exp([log(R2R
T
1 )]×)R1 = R2R

T
1 R1 = R2. (44)

Thus according to (41), the difference vector ωωω =
log(R2R

T
1 ) can be interpreted as the angular velocity that

rotates R1 into R2 in unit time.
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