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Abstract— In this paper we address the problem of accurate
trajectory tracking while ensuring compliant robotic behaviour
for periodic tasks. We propose an approach for on-line learning
of task-specific dynamics, i.e. task specific movement trajec-
tories and corresponding force/torque profiles. The proposed
control framework is a multi-step process, where in the first
step a human tutor shows how to perform the desired periodic
task. A state estimator based on an adaptive frequency oscillator
combined with dynamic movement primitives is employed to
extract movement trajectories. In the second step, the movement
trajectory is accurately executed in the controlled environment
under human supervision. In this step, the robot is accurately
tracking the acquired movement trajectory, using high feedback
gains to ensure accurate tracking. Thus it can learn the
corresponding force/torque profiles, i. e. task-specific dynamics.
Finally, in the third step, the movement is executed with the
learned feedforward task-specific dynamic model, allowing for
low position feedback gains, which implies compliant robot
behaviour. Thus, it is safe for interaction with humans or the
environment. The proposed approach was evaluated on a Kuka
LRW robot performing object manipulation and crank turning.

I. INTRODUCTION

Many commercially available robots are specialised for

different tasks, from entertainment [1] to house keeping

[2]. However, general purpose robots capable of performing

different tasks to help people in their natural environment are

still not possible. Such robots will have to posses the ability

to quickly learn new skills either autonomously or with the

help of a human tutor. The issue of autonomous skill learning

remains one of the challenges of robotics research [3].

In the last decade many algorithms for machine learning

were proposed and later adopted in robotics. One of the

main reasons for their applicability in robotics is that they

can be used to learn complex models. It has been shown

that machine learning algorithms can successfully be used

to acquire kinematics [4] and dynamic [5] models, for loco-

motion tasks [6] or even complex behaviors such as ball-in-

a-cup game [7]. Despite significant improvement in learning

algorithms, the necessity to acquire large amounts of training

data and long learning times remain their main drawbacks.

An extensive review for model learning in robotics was

recently published by Nguyen-Tuong and Peters [8].

For improving learning and control performance, re-

searches proposed different biologically inspired methods for

robot control. An extensive review, covering methods from
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optimal feedback control [9] to forward models and predic-

tive control [10], was recently published by Franklin and

Wolpert [11]. One possible approach to biologically inspired

robotic control is the use of central pattern generators for

the control of periodic tasks [12]. Central pattern generators

are neural circuits capable of producing coordinated motions

while receiving only simple input signals [12]. Their appli-

cability was shown on different robots and tasks such as, for

example, swimming and walking with a robotic salamander

[12] or walking with humanoid robots [13], [14].

In this paper we propose a novel control framework by

combining central pattern generators with task-specific kine-

matic and dynamic profiles encoded with dynamic movement

primitives (DMP) and dynamic torque primitives (DTP),

respectively. The proposed framework is build on the two-

layered motion imitation system presented in [15] and [16].

We propose to augment this system with dynamic torque

primitives (DTPs), which can learn and repeat task-specific

dynamics when performing a desired periodic task. The

applicability of the approach is shown for two periodic tasks,

i. e. manipulating objects and crank-turning as shown in

Fig. 1.

The proposed algorithm is comprised of three steps. In

the first step, it learns a task-specific motion trajectory with a

standard DMP. In the second step, the task-specific dynamics

is learned with the DTP. In the last step, the task is executed

with the DMP providing the reference trajectory. Since

DTP can provide feed-forward torques, the trajectory can

be accurately tracked with low position feedback gains, thus

ensuring compliant behaviour. Due to compliance the robot

can safely interact with the environment or with humans.

The paper is organized as follows. In Section II, we give

a detailed description of the proposed learning system. In

Section III we evaluate the proposed approach in real-world

tasks including manipulating an object and crank-turning.

Fig. 1. Experimental setup for the crank-turning.
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Conclusions and summary are given in Section IV.

II. TASK-SPECIFIC MOTION AND DYNAMICS

LEARNING

As explained above, the ability to work in an unstructured

environment including possible contacts with humans implies

compliant robot behaviour. Moreover, autonomous robots

must be able to quickly acquire new motor skills, including

skills that involve contact with the environment. To satisfy

these goals, we propose a novel learning framework, which

is based on an adaptive frequency oscillator [16] combined

with DMPs [17] and DTPs. Incremental updates of the

available models can be computed in real time to achieve

rapid learning of both DMPs and DTPs. The proposed

control system is a multi-layered three-step process, which

in the last step essentially acts as a task-specific model-

based controller.Thus in the execution step the robot remains

compliant and any collision forces that might arise remain

small.

Assuming that the robot consists of rigid bodies, the

equations of motion can be written as

H(qqq)q̈qq+C(qqq, q̇qq)+ggg(qqq)+ εεε(qqq, q̇qq, q̈qq) = τττ , (1)

where qqq, q̇qq and q̈qq are the joint positions, velocities and

accelerations, respectively, H(qqq) is the inertia matrix, C(qqq, q̇qq)
are the Coriolis and centripetal forces, ggg(qqq) are the gravity

forces and εεε(qqq, q̇qq, q̈qq) are the nonlinearities not considered in

the rigid body dynamics, e. g. friction. The inverse dynamic

model of the robot (1) is denoted as fff dynamic(qqq, q̇qq, q̈qq). In

our experiments we used Kuka LWR arm with integrated

inverse dynamic model fff dynamic(qqq, q̇qq, q̈qq) of the robot. Note

that this inverse dynamic model does not include any task-

specific influences on the dynamics of the robot. In general,

the commanded torque for joint specific impedance control

is given with

τττu = K(qqqd −qqq)+D(q̇qq)+ τττ f + fff dynamic(qqq, q̇qq, q̈qq), (2)

where K and D are matrices of the desired stiffness and

damping, respectively [18] and τττ f is the vector of additional,

task-specific torques. If the diagonal elements of K are high,

then the robot is stiff and can accurately track the desired

joint trajectories qqqd . Vice versa, if the diagonal elements of

K are low, then the robot is compliant but cannot accurately

track the desired trajectory unless the feed-forward torques

τττ f can be provided to improve the tracking quality. τττ f can

be specified by modelling the dynamics of the task or by

learning as in our approach. The integration of the learnt

τττ f into DMP framework to simultaneously ensure compliant

behaviour and accurate tracking is the main contribution of

this paper.

In the following we explain the three steps of the proposed

learning approach: A) learning of task-specific trajectories,

B) learning of task specific dynamics and C) execution of the

movement with accurate trajectory tracking and compliant

behaviour.

A. Learning of task-specific trajectories

In the first step, the aim is to learn task specific trajec-

tories of motion (positions) demonstrated by a human tutor

performing the desired periodic task. To learn the motion

trajectory demonstrated by a human tutor in real-time, we use

adaptive frequency oscillators combined with DMPs. It was

shown in [15], [16] that this setup can successfully extract

the frequency of motion and learn the desired waveform in

real-time. The following paragraphs provide a short recap of

the algorithm.

The motion learning algorithm consists of two layers. The

first layer, which extracts the motion frequency is based on

an adaptive frequency oscillator combined with an adaptive

Fourier series [16]. It is a second order system of differential

equations

Ω̇ΩΩ =−PEsin(φφφ), (3)

φ̇φφ = ΩΩΩ−PEsin(φφφ), (4)

where ΩΩΩ is the vector of extracted frequencies, φ is the vector

of phases, P is the diagonal matrix of the coupling constants

and E is the diagonal matrix with the diagonal values given

by the difference between the actual joint position qqq and the

estimated joint positions q̂qq. The vector of the estimated joint

positions is defined as q̂qq = [q̂1, q̂2, ..., q̂i]
T , where i denotes

the joint index. Each q̂i is given by

q̂i =

m

∑
c=0

(αi,c cos(cφi)+βi,c sin(cφi)). (5)

Here, m denotes the size of the Fourier series. The weights

αi,c and βi,c are updated according to the following learning

rule

α̇i,c = η cos(cφi)ei, (6)

β̇i,c = η sin(cφi)ei, (7)

where ei is the diagonal element Ei,i of matrix E and η
is the learning constant (see [16] for details). If not stated

otherwise, the size of the Fourier series was set to m = 10

in our experiments.

The second layer of the motion learning system ensures

the proper waveform of the output signal. The output signal

is encoded as a DMP. The equations of DMPs summarised

from [15], [19], [20] are

ṙrr =−diag(ΩΩΩ)(A(Bppp+ rrr)+ fff (φ)) , (8)

ṗpp = diag(ΩΩΩ)rrr, (9)

where A and B are constant diagonal matrices which guar-

antee that the system monotonically converges to the desired

trajectory, with Ai,i = 8 and Bi,i = 2, and fff is the vector forc-

ing term that determines the actual shape of the trajectory.

The elements of fff are given by

fi(φ) =

N

∑
j=1

ψ j(φ)wi, j

N

∑
i=1

ψ j(φ)

, (10)
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where ψ are Gaussian-like kernel functions defined by

ψ j(φ) = exp(h(cos(φ − c j)−1)) . (11)

Here, h is the width and c j the centres describing the

distribution of basis functions over one phase period. If not

stated otherwise, we use c j, j = 1, . . . ,25, equally spread

between 0 and 2π .

By using locally weighted regression as in [15], the system

can learn the shape of the trajectory on-line. The target

trajectory of a single joint i is defined by

fi =
q̈i

Ω2
i

−Aii

(

Bii−qi −
q̇i

Ωi

)

. (12)

To update the weights wi, j for the kernel function ψ j, we

use the recursive least-squares method with the forgetting

factor λ . The forgetting factor was apriori set to 0.995. With

the given target for fitting (12), the recursive algorithm is

updating the weights wi, j using the following rule

wi, j(t +1) = wi, j(t)+Ψ jPi, j(t +1)ri(t)ei(t), (13)

ei(t) = fi(t)−wi, j(t)ri(t), (14)

Pi, j(t +1) =
1

λ



Pi, j(t)−
Pi, j(t)

2ri(t)
2

λ
Ψ j

+Pi, j(t)ri(t)2



 . (15)

If not stated otherwise, we use wi, j(0) = 0 and Pi, j(0) = 1,

where i = 1, . . . ,DOF and j = 1, . . . ,25.

Combining DMPs with adaptive frequency oscillators by

anchoring the kernel functions to the phase signal φφφ makes it

possible to synchronise an arbitrary trajectory to an arbitrary

periodic signal congruent with the desired task. Because

the phase estimation in adaptive frequency oscillators and

learning of the motion in DMPs are done simultaneously,

all system delays are automatically included (see [16] for

details).

B. Learning of task-specific dynamics

In the second step, the motion imitation system must learn

the task-specific dynamics. The learning of the task-specific

dynamics is done by accurately tracking the trajectory ppp that

was learned in the first step. High position feedback gains

Kh, implying also strong reactions to perturbations, are used

to achieve accurate DMP tracking. To perform the motion

with constant frequency ΩΩΩd , the error EEE in (4) is set to 0

and (4) transforms into

φ̇φφ = ΩΩΩd . (16)

This ensures that the motion is repeated with the last learned

frequency of motion. Preserving the exact frequency of

motion is important because dynamic trajectories are not the

same if the frequency is changing.

To learn task-specific dynamics at the desired frequency,

we use a similar set of differential equations DTPs as in

the case of DMPs. The main difference is that for DTPs the

target function for learning is defined as

fτ ,i =
τ̈i

Ω2
n

−Aii

(

Bii−τi −
τ̇i

Ωi

)

, (17)

where τi is the commanded torque signal of the selected

joint. The second order differential equations for DTPs are

this given as

u̇uu =−diag(ΩΩΩ)(A(Bvvv+uuu)+ fff ) , (18)

v̇vv = diag(ΩΩΩ)uuu, (19)

where vvv is essentially the vector of the corresponding

task-specific inverse dynamics, i. e. open-loop feed-forward

torques. Function fff is defined as in (10) and its free parame-

ters can be estimated using locally weighted regression, i. e.

Eq. (13) – (15).

C. Executing of the desired task

In the third step, the task is executed by using control

algorithm (2), but replacing qqqd with ppp from (8) – (9) and τττ f

with vvv from (18) – (19)

τττu = Kl(ppp−qqq)+D(q̇qq)+ vvv+ fdynamic(qqq, q̇qq, q̈qq), (20)

Here, vvv is the task specific feedforward torque and

fdynamic(qqq, q̇qq, q̈qq) is the robot inverse dynamic torque. Because

task-specific dynamics is provided in a feedforward manner,

the tracking accuracy will remain in the same range even

if much lower position feedback gains are used than during

training, i. e. Kl << Kh. By applying low position gains Kl

we assure compliant robot behaviour. Note, that the tracking

accuracy remains the same as long as the system is not

perturbed.

The main idea used in the proposed approach is that

feedforward compensation is used to assure the nominal

behaviour of the robot for the given task even when low

position feedback gains are used. In this way, we can assure

good tracking and compliant behaviour.

III. PERFORMANCE EVALUATION

In this section we evaluate the performance of the pro-

posed approach. The results of obtained by kinesthetically

teaching Kuka LWR arm to perform the desired motion and

then autonomously learning the corresponding task-specific

dynamics are presented in the paper and the accompanying

video.

We performed two separate experiments. In the first exper-

iment, a human tutor was teaching the Kuka LWR arm how

Fig. 2. Experimental setup for kinesthetically teaching the robot to perform
desired periodic task.
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to perform a periodic manipulation task. The experimental

setup is shown in Fig. 2. For performance illustration and

motion comparison, the robot was performing the same

task but with different payloads: with an empty gripper

(BarrettHand BH 262) and with the gripper holding a weight

of 1.5 kg. Note that the payload influences the overall

dynamic properties of the system.

Fig. 3 shows the results of the first step, where the

tutor was kinesthetically guiding the robot to perform the

desired task. We can see from the top left plot, where the

extracted frequency Ω is shown, that the adaptive oscillator

was able to extract the proper movement frequency which

corresponds to the actual frequency of movement produced

by the human through kinesthetic guidance. Extracting the

proper frequency Ω of the task is crucial for the learning

process because the adaptive oscillator also provides the

phase signal φ , used to anchor the movement trajectory. The

learning process for the kinematic trajectory will be effective

only if a proper phase can be extracted and a stable limit

cycle achieved. This is due to the fact that DMPs are driven

by the frequency Ω and phase φ .

The bottom left plot shows the sum of square differences

eq between actual join positions qqq and the learned DMP

trajectories ppp. We can see that the error eq approaches

zero immediately after the estimated frequency converges

towards the actual basic frequency of the motion, which

was approximately 0.42 Hz. The performance of the learning

process is also illustrated in the right plot where the actual

joint trajectories qqq (solid lines) and DMP trajectories ppp

(doted lines) are shown for one period for all seven joints.

From the plots we can conclude that the motion trajectory

learning was successful.

Once the system learns the motion trajectories using

DMPs, it can proceed to the second step of learning the

task-specific dynamics, where these motion trajectories are

executed on the robot using a stiff tracking controller with

high diagonal elements of Kh. Since the robot is not compli-

ant in this phase, the teacher must ensure that the robot does

not encounter any obstacles, thereby preventing a possible

damage to the robot. Examples of learning the task-specific

dynamics for the same motion pattern and the two different

payloads are shown in Fig. 4.

We can see in the top plot of Fig. 4 that DTPs successfully

learned the task-specific dynamic trajectories in less than

three motion periods. The learning of DTPs is faster than the

learning of DMPs because the right frequency has already

been extracted. The effectiveness of the learning process can

be seen in the bottom plot, where both the actual commanded

torque and the learned DTP trajectories are shown. Here we

can see that they are, apart from the measurement noise,

perfectly matched. By comparing bottom plots, we can also

see that the dynamic trajectories are different for the same

motion trajectories. This is as expected since the payload at

the end effector was different in both cases.

Note that for the learning process, the torque trajectory

was not filtered or processed in any other way. We can see

that DTP trajectories are smooth. Smoothness of DTPs is
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Fig. 3. On-line learning of the desired movement from kinestetic guiding.
The top-left plot shows the extracted frequency Ω and the bottom-left plot
the sum difference between the learned ppp and the actual qqq joint position.
The right plot shows the actual qqq (solid lines) and the learned ppp (doted
lines) positions in one period for all seven DOF.
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ensured because they are encoded as a critically damped

second order differential equation system (18) – (19), which
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also assures smooth derivatives.

The comparison between different control states for the

task of lifting an object held by a robot is shown in Fig. 5,

where the sum of square tracking errors eq = ∑‖qqqd − qqq‖2

and the exerted external force Fe is shown. There are four

different control states in Fig. 5. For the first 15 periods

we can see the task-specific dynamic learning, where the

controller was set to accurately track the desired motion.

As expected the tracking error was marginal. We can also

see that in this step there were no external forces acting

on the robot. This is necessary because this step can only

be accomplished if there are no unexpected collisions. The

second step between period 15 and 25 shows the performance

with high gain position feedback control augmented with the

feedforward task dynamics learned in the previous step. Here

we can see that the tracking error remains small even if there

are external forces acting on the robot. This may be a useful

behavior under some circumstances, but dangerous for robots

working together with humans.

If a robot is working in an unstructured environment or

in contact with humans, accurate trajectory tracking using

only feedback control may not be an optimal solution. In

such cases the robot is stiff and any collisions with objects

cause high impact forces that may damage the robot or

even worse, the robot could harm people working with it.

In such situations, the control system should on the one

hand enable natural compliant behaviour and on the other

hand a good tracking precision. The performance of the

control system with compliant behaviour and feedforward

task dynamics is shown form 25th to 45th period in Fig. 5.

Here we can see that the impact forces when the robot

collides with the environment are smaller because the robot

moves away from the desired motion pattern when collisions

occur. Nevertheless, we can see that the tracking accuracy

remains excellent if no external forces present. The last part,

from 45th to 50th period, shows the behaviour if feedforward

dynamic model is not used, but the robot is compliant with

low stiffness gain matrix Kl . It is clear that with the low

gain position feedback control and without the feedforward

dynamic model, the robot can not perform the desired task

at all, even when no external forces are present. The results

are also supported by the behaviour exhibited by a robot in

the first part of the accompanying video.

To further demonstrate the applicability of the proposed

approach, we applied it to a crank turning task (see also

Fig. 1). By turning the crank, the robot changed the height

of the table, but at the same time also the center of crank

rotation. To successfully perform this task, the robot must

keep contact with the handle of the crank. To teach the robot

how to perform this task, we first put the table upside down

so that the center of the handle position was kept constant.

The robot was then kinesthetically guided to turn the handle,

and the pattern was learned with DMPs. The learned motion

was then executed with accurate tracking controller for the

purpose of learning task-specific dynamics with DTPs. Both,

the actual joint values qqq and the DMPs ppp for motion learning

and commanded torqes τ and DTPs vvv are shown in Fig. 6.
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and low position feedback without using feedforward DTPs. The top plot
shows the sum square tracking errors eq and the bottom plot shows the
exerted external force Fe.

Here we can see that the difference between the actual and

learned values is minimal for both DMPs and DTPs.
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Fig. 6. Learning of the motion pattern with DMPs in the left plot and
learning of the task-specific dynamics in the right plot. Solid lines show the
actual values and dashed lines the DMPs and DTPs, respectively, for both
plots.

Once the task-specific motion pattern and the dynamics

are learned, we can use compliant robot control with low

position gains Kl and feedforward dynamics. The advantage

of compliant control in this specific task is the ability to

automatically adapt to the vertical translation of the rotation

center during crank-turning. If accurate tracking with high

gain position control is used, high forces will appear very

quickly. A comparison between accurate tracking controller

with high position gains and compliant position control with

the learned feedforward task-specific dynamics is shown in
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Fig. 7. We can see in the top plot that the exerted forces

were above safe working limits after 17th periods when a

stiff controller was used. On the other hand, when using

compliant control with feedforward DTPs, the robot was able

to perform many more turns, altogether 40. We can also see

that the force acting on the robot was lower and did not

exceed safe working limits. The bottom plot of Fig. 7, where

top positions in each period are displayed, shows that when

compliant robot control with feedforward DTPs was used, the

robot was able to adapt to the motion of the handle. On the

other hand, if stiff control behaviour was used, adaptation

was not possible. As expected, due to a certain degree of

environment compliance, the top positions were in this case

the same in all periods, but the forces increased significantly.

This is also shown in the last part of the accompanying video.
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task specific dynamics using DTPs. Top plot shows the peak force and the
bottom plot the top handle position in each period.

IV. CONCLUSIONS

We proposed a new three-stage learning framework which

can autonomously learn proper motion trajectories and the

corresponding task dynamics to perform a desired task.

The learning of motion patterns with DMPs and of task-

specific dynamics with DTPs can be done in real time

and without any additional signal processing methods. As

such, the proposed learning framework enables simple and

computationally inexpensive control in the case of dynam-

ically challenging periodic tasks. The main contribution of

our approach is that by learning the task specific dynamics

we can ensure accurate task execution and at the same

time compliant robot behaviour. In the future, we would

like to generalise the approach for the aperiodic tasks and

incorporate statistical learning methods to build a library of

motions including task-specific dynamics.
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