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Abstract As the tasks of autonomous manipulation robots get more complex, the
tasking of the robots using natural-language instructions becomes more important.
Executing such instructions in the way they are meant often requires robots to infer
missing, and disambiguate given information using lots of common and common-
sense knowledge. In this work, we report on Probabilistic Action Cores (PRAC) [21]
— a framework for learning of and reasoning about action-specific probabilistic
knowledge bases that can be learned from hand-labeled instructions to address this
problem. In PRAC, knowledge about actions and objects is compactly represented
by first-order probabilistic models, which are used to learn a joint probability distri-
bution over the ways in which instructions for a given action verb are formulated.
These joint probability distributions are then used to compute the plan instantiation
that has the highest probability of producing the intended action given the natural
language instruction. Formulating plan interpretation as a conditional probability is
a promising approach because we can at the same time infer the plan that is most
appropriate for performing the instruction, the refinement of the parameters of the
plan on the basis of the information given in the instruction, and automatically fill
in missing parameters by inferring their most probable value from the distribution.
PRAC has been implemented as a web-based online service on the cloud-robotics
platform openEASE [7].

1 Introduction

In artificial intelligence, the problem of interpreting instructions is mostly ap-
proached by applying automated action planning methods in order to generate plans
for tasks. However, the plans generated by such systems are too abstract for compe-
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Fig. 1 Exemplary reasoning task in PRAC for interpreting a NL instruction.

tent execution by robots since they merely contain what is given but not what is nec-
essary. A promising alternative is to generate plans for tasks from natural-language
instructions that humans write for humans. Such instructions are available in abun-
dance in the world-wide web at websites like wikihow.com, ehow.com, and many
others. Instructions written for humans are more informative than automatically gen-
erated action plans because they often describe how actions have to be performed to
bring about the desired effects, they talk about what can go wrong, and give addi-
tional hints. For robotic agents it makes sense to consider instruction understanding
to be the computational problem of inferring how the agent could (successfully) per-
form the instruction. This problem formulation is substantially different to the prob-
lem of text understanding for question answering or machine translation. In those
reasoning tasks, the vagueness and ambiguity of natural-language expressions can
often be kept and translated into other languages. In contrast, robotic agents have to
infer missing information pieces and disambiguate the meaning of the instruction in
order to perform the instruction successfully.

Thus, if a robotic agent is tasked with the instruction “neutralize 75ml of hy-
drochloric acid”, for instance, the robot has to infer that neutralization requires to
add a some amount of base substance to the hydrochloric acid. It also has to in-
fer that this means that some amount of the base substance has to be transferred
from the container which it is contained in into the container that holds the acid
substance. Finally, because the amount is small and accurately specified the adding
step should be performed through a pipetting action. As another example, consider
the two instructions “fill the kettle with water” and “fill a cup with coffee.” Though
the syntactic structure of the sentences as well as their semantics are identical, they
fundamentally differ with respect to execution. Filling a kettle with water can be
achieved by using the tap, whereas filling a mug with coffee implies a pouring mo-
tion from a coffee pot into a cup. In other words, understanding a natural-language
instruction for robot execution requires appropriate interpretation and completion.
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For the purpose of this paper we consider robotic agents that are equipped with
a plan library that contains parameterizable plans for action verbs, which have to
be refined according to a given instruction. In this case instruction understanding
can be realized by retrieving the plan corresponding to the action required by the
instruction and by constraining its parameterization according to the instruction.

To deal with the incomplete and ambiguous nature of natural-language instruc-
tions, we phrase the problem as a probabilistic reasoning problem, namely that of
finding the most probable ‘executable’ refinement of the respective general plan
given the natural-language instruction as evidence:

of hydrochloric acid”

arg max P (intended(plan) neutralize 75ml )

plan

To perform this inference task we equip the robot with a joint probability distribu-
tion over the source, destination, the object acted on, the tool to be used, and other
action roles for each action verb. To this end, we introduce the notion of action
cores, which are conceptualizations of action verbs that represent formal specifi-
cations of actions and their parameters that are capable of interfacing the plans on
a symbolic, linguistic level. The resulting probabilistic first-order knowledge base
of action cores and their respective action roles is called probabilistic action cores
(PRAC). PRACs can be used to perform disambiguation and completion of vague,
underspecified natural-language (NL) sentences and thus are suitable for NL in-
struction interpretation.

An example of such an inference process is depicted in Figure 1 which will also
be the running example for our paper. We have equipped the robot with a plan library
including plans for pouring and pipetting, among many others. The parameters of
the plans for pouring and pipetting are the theme of the action, meaning the stuff
to be transported from one place to another one, the source of the stuff, and the
destination of the stuff. The problem of instruction interpretation for robot execution
can now be formulated as the reasoning task of inferring the most probable plan
(action_core(a,c)) and the most probable refinement of the formal plan parameters
(source, destination, theme) given the natural language instruction “neutralize 75ml
of hydrochloric acid”.

This is a very elegant and general formulation of instruction interpretation be-
cause by doing the inference task on a joint probability distribution over action
instructions we can at the same time infer the plan that is most appropriate for per-
forming the instruction, the refinement of the parameters of the plan schema on the
basis of the information given in the instruction, and automatically fill in missing
parameters by inferring their most probable value from the distribution.

The key contributions of this paper are the following:

e We formalize PRAC and the computational problem of inferring the most proba-
ble executable action instruction.

e We show how PRACSs can be realized as Markov logic knowledge bases and
learned from few examples.
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Fig. 2 Key concepts of the framework and their role in inferring the most probable executable
instruction.

e We show how the problem of inferring the most probable executable action in-
struction can be implemented to yield effective solutions as full size first-order
probabilistic reasoning problems.

In the remainder of this paper we proceed as follows. We start with an introduc-
tion to the PRAC framework and detail its conceptual components. Subsequently,
we give a formal definition of the reasoning tasks that PRAC addresses and describe
our approach for tackling them. Then we discuss the state-of-the-art in instruction
interpretation for robot commanding and conclude our work.

2 Conceptual Framework

The PRAC framework for translating natural-language instructions into abstractly
parameterized robot action plans is depicted in Figure 2. Its main components are
the PRAC plan library, the PRAC knowledge base, and the PRAC dictionary. In
a nutshell, the roles of these components are the following ones.

The PRAC dictionary provides all possible meanings of all the words that can
occur in a NL instruction to be executed by a robot. The meanings are concepts in
an ontological knowledge base defined in the dictionary WordNet [12], which com-
prises more than 117,000 concepts. For example, the possible meanings of ‘cup’ in
the PRAC dictionary include a specialization of a physical object and, more specifi-
cally, a container object, an amount specification, and a trophy (see also Figure 3).

The PRAC knowledge base contains a collection of action verb-specific knowl-
edge bases, called action cores, that represent how possible action instructions for
a given action verb can be constructed on a conceptual level. For example, we can
formalize a pouring action on a concept level in terms of conjunctions of logical
assertions over the predicates action_core(a, Pouring), theme(a, t), source(a, s), des-
tination(a, d), etc. The assertion theme(a, t) states that the theme of action a is of
the type ¢, i.e. the entity which is poured. The parameters ¢, s and d are concepts in
the PRAC dictionary.
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Action-specific knowledge bases are then trained with a set of instructions stated
in first-order logic in order to learn a joint probability distribution over predicate
instantiations, which is induced by the given set of instructions. These distributions
are called the probabilistic action core (PRAC). The learned distribution represents
correlations between the concept restrictions of the parameters in instructions with
respect to an action verb. For example, the PRAC of Pouring could entail that if the
Theme of a pouring action is the concept wine then it is more likely that the source
for the pouring action will be an instance of the concept bottle and the destination
an instance of the concept glass. Conversely, if the Theme is of the concept water,
then the source is more likely to be a tap.

Finally, the PRAC plan library contains action specific plans. PRAC plans are
equipped with plan signatures following the ‘design-by-contract’ principle: The
plan signature specifies the formal parameters of the plan, the concept restrictions
for each parameter and how the respective plan parameter can be computed from the
PRAC knowledge base. For example, the signature of the plan for a pouring action
looks as follows:

pour-from-container(from :default (an object
(type container.n.01)
(contains (Pouring Theme))
amount :default (Pouring Quantity)
to :default (an object
(type container.n.01)
(contains (Pouring Goal))))

The plan schema specifies that the from parameter has to be a specialization of the
concept container.n.01 and that the from parameter can be retrieved from the PRAC
knowledge base of Pouring by retrieving the value of the role Theme of Pouring. Like-
wise, the amount parameter can be obtained by querying for the Quantity predicate.

It is required that all formal parameters of the plan are linked to roles in the re-
spective action core. By providing a plan signature, the designer of the plan guaran-
tees that for all plan refinements that satisfy the concept restrictions of the individual
parameters, executing the plan generates meaningful behavior. ‘Meaningful’ here
means that the plan generates behavior that makes sense but is not required to suc-
ceed. For a pouring action, for instance, the plan tells the robot to grasp the source
container, to hold it above the destination and to tilt it. However, the execution of
the parameterized plan hazards failures caused by inappropriate motor control or
inaccurate perception, such as spilling the liquid because the container is held too
high, off center, or the pouring angle is too steep. This requires that all parameters
needed to call sub-plans are computed by the plan and no call to a sub-plan contains
undefined parameters, which would cause the control system to crash.

The plans themselves are considered as black boxes in PRAC reasoning. Plan
execution systems that can handle such qualitative, symbolic constraints on param-
eters include RAP [13] and PRS [14]. If deeper reasoning about the ramifications of
actions is necessary, the CRAM [19, 6] executive provides reasoning methods that
translate qualitative constraints into PROLOG queries that use sampling and back-
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Fig. 3 Left: Selection of logical predicates representing syntactic structure of words in a sentence.
A comprehesive list can be found in [9] Right: Selection of different meanings of the word ‘cup’
obtained from WordNet.

tracking to find parameter instantiations satisfying these constraints. Kinds of such
parameters include e.g. action effects, visibility, reachability and the like.

Using the components of the PRAC system introduced above, the computational
process for computing the most probable executable instruction operates as follows:
In a first step, a given natural-language instruction 1 is translated by a natural-
language parser into a logical representation of the instruction’s syntactic structure
I, which we call a PRAC instruction. The PRAC instruction / is then interpreted by
inferring the meaning and semantic role of the individual syntactic structures and
missing information pieces using the PRAC dictionary and the action core itself.
This interpretation process results in the most probable executable instruction of 1.
In the remainder of this section we will describe in more detail the concepts and
components that learning and reasoning about action cores is built upon.

2.1 PRAC Instructions

A PRAC instruction / is a set of assertions about the grammatical relations referring
to the constituents of a natural-language instruction and their syntactic structure.
These grammatical relations are represented by predicates including the small se-
lection listed in Figure 3. They are obtained for any sentence in natural language
by a parser like the Stanford parser [8]. Using these predicates, a natural-language
instruction such as 1 = “neutralize the hydrochloric acid with sodium hydroxide”,
for example, is transformed into the logical assertions /,

dobj(neutralize-1, acid-4) has_pos(neutralize-1, VB)
det(acid-4, the-2) has_pos(acid-4, NN)
nn(acid-4, hydrochlroic-3) has_pos(hydroxide-7, NN)
nn(hydroxide-7, sodium-5) has_pos(sodium-6, NN)
prep_with(neutralize-1, hydroxide-7), Q8

which we denote by .#(1). These syntactic dependencies indicate that the second
word ‘the’ depends on the fourth word ‘acid’ as a determiner, ‘hydrochloric’ and
‘acid’ represent a compound noun, which forms the direct object of the word ‘neu-
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tralize’, which is connected to the word hydroxide via the preposition ‘with’. The
syntactic structure of the instruction thus forms a relational database that serves
as evidence in a probabilistic relational model. For a more detailed and exhaustive
description of the syntactic dependencies, we refer to [9].

2.2 PRAC Dictionary

The PRAC dictionary is a set of logical assertions that assign meaning (word senses)
to words. It is filled with word senses (‘synsets‘) from the online dictionary Word-
Net! (see Figure 5). The word senses are organized in a taxonomy given by a di-
rected acyclic graph, which we denote by the relation C, i.e. ¢; C ¢ denotes that
the concept c; is a specialization of concept c;.

In the PRAC dictionary, a word w is assigned a particular meaning m by means
of a set of logical assertions has_sense(w,m) and is_a(m,c) V¢ m C ¢, where
has_sense(w, m) states that the word w has the sense m in the WordNet dictionary
and the is_a predicate is the transitive closure of m in C. The PRAC dictionary also
provides a function p: W x P — &(T), which returns the set of all possible mean-
ings of a word given its part of speech, where W denotes the set of all words, P is
the set of all parts of speech, T is the set of all concepts in C and Z?(-) denotes the
power set.

Words can have multiple meanings causing ambiguity in NL instructions. Con-
sider, for example, the terms ‘cup’ and ‘milk’ and their meaning in the two in-
structions “fill a cup with milk” and “add a cup of milk.” In the former case, ‘cup’
refers to a drinking mug, a physical object that can hold milk. In the latter case,
it rather refers to a measurement unit specifying the amount of milk to be added.
Though this semantic difference may seem subtle, correctly distinguishing between
word meanings is crucial for successfully performing the actions. Thus, in finding
an appropriate interpretation of an instruction, selecting the most appriopriate word
meanings is a necessity.

2.3 PRAC Knowledge Base

The PRAC knowledge base is the central component of the PRAC system. It con-
tains a library of data structures, which we call action cores. An action core is
the conceptualization of an action which constitutes an abstract event type and as-
signs an action role to each entity that is needed in order to successfully perform the
respective action.

More formally, an action core AC is defined as a tuple (A, R), where A is the glob-
ally unique name of the action core and R = {ry, }/, is an indexed set of its associ-

1" All concept names refer to concept names provided by the NLTK toolbox (http://www.nltk.org)
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Fig. 4 Exemplary action instantiation for the instruction “Neutralize 75 ml of hydrochloric acid.”
Taxonomy paths (is-a) are truncated for better readability.

ated action roles. For an interpretation x of a PRAC instruction 1, interpretation(x,I),
the following holds:

np
action_core(x,A) — Jcy, ..., cn, /\ ra;(x,ci), i €T 2)
i=1

The right side of the implication in (2) ensures that every instantiation of an action
core must have a complete assignment of its action roles to concepts in T, otherwise
it is not an instance of the action core. However, being able to assign all roles of an
action core does not imply that it must have an instance in x. Equation 2 defines the
space 2" of possible interpretations of an instruction. A graphical representation
of one particular interpretation of the instruction “neutralize 75 ml of hydrochloric
acid” is shown in Figure 4: There are instances of the three action cores Neutraliza-
tion, Adding and Pipetting with their respective roles assigned a concept. The set of
action cores and our definition of an interpretation can thus be regarded as a template
for constructing a graphical model of interpretations like the one in Figure 4.

An example of the action core Pouring and its action roles was already given
above. In that context, the action core has a direct mapping to a plan schema in the
PRAC plan library and its action roles Source, Destination and Theme interface the
formal parameters of the plan schema. As another example, consider the action core
Neutralization, representing the process of causing a chemical substance to take a
neutral pH-value by combining it with some other substance. For the chemical reac-
tion itself, there must always be two components reacting, an acid and a base. The
corresponding action core Neutralization thus is attached two action roles, AcidSub-
stance and AlkalineSubstance. It is important to note that within PRAC, the domains
of action roles and their corresponding parameter slots in the plan schemata are
given by the set T of all concepts from the ontological knowledge base in the PRAC
dictionary. This ensures that all symbols have the same semantics across the differ-
ent components of PRAC, the syntactic representation in the PRAC instructions, the
semantic action representation of action cores as well as the plan schemata.

There is an action core for every verb in the PRAC dictionary that represents a
meaningful action. However, there are action cores that do not have a direct corre-
spondence to a plan schema because they do not represent actions that are directly
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executable but are subject to further reasoning. Neutralization is an example of such
an action core: It is not an executable action as such, but rather describes a chemical
process that is triggered by Adding one substance to the other. Adding itself is an
action core representing the process of making a new member part of an existing
group. It has three action roles, namely the Group, the NewMember and the Quantity.
The Adding action core, however, also represents a process that can be achieved in
very different ways depending on the context and the objects involved. For exam-
ple, “add one liter of water” could be achieved by using the tap or pouring from one
container to the other, whereas “add one milliliter of water” should be performed
by using a pipette. Conversely, “add a pinch of salt” can be done by using a salt
cellar. Such an action core A that does not have a direct mapping to an executable
plan schema has attached a designated action role AchievedBy(A, A’), which is as-
signed another action core A’ that represents the most likely refinement of the action
represented by A.

The goal in natural-language instruction understanding is now to find the most
probable interpretation under the instruction given as evidence. Therefore, the
PRAC knowledge base has a conditional probability distribution over all action cores
and their action roles, conditioned on the PRAC dictionary and the PRAC instruc-
tions, as depicted in Figure 2,

action_core(x,A) —
HC] AR 7CI1A /\;’lil rAi(xaCi)

T,f). 3)

We call (3) the probabilistic action core (PRAC). The probabilistic action core is
a first-order probabilistic knowledge base about actions and their parameterizations
that is used to disambiguate, interpret, complete and refine NL instructions.

2.4 Examples

The probabilistic action core can be used to resolve ambiguity and to complete an
instruction to the most plausible action specification, based on what is given by the
instruction. In the following, we will illustrate the usage of the PRAC distribution
by means of three simple exemplary queries?.

Action role assignment. PRAC can be queried for the most likely assignment of
roles for a given set of objects with respect to a particular action core. Consider an
instruction, such as “add 3 drops of sodium hydroxide.” There are two objects 0|
and o, in the instruction given by the concepts naoh.n.01 and drop.n.02 in the PRAC
dictionary. In context of the Adding action core, one can solve for the most probable

assignment of the action roles attached to Adding, i.e.

2 We are using a slightly modified notation, which technically does not precisely fit the previ-
ous formulations. We think this simplified notation better supports the understanding of reasoning
considered in this paper.
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Fig. 5 Conditional distribution over an excerpt of the PRAC taxonomy structure for containers,
substances and measuring units for an entity w taking the Goal role of the Filling action core.
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where | denotes the null assignment. In this example, the Quantity role has been
assigned the object drop.n.01, the NewMember role the object naoh.n.01 and the
Group could not have been assigned any of the objects mentioned in the instruction.
Note that this arg max solution is not a proper interpretation of the instruction in the
notion from above, because there is no Group specified.

Action role completion. In order to fill missing role assignments such as the
Group in the previous example, one can solve for a different arg max query. Con-
sider the instruction “neutralize the hydrochloric acid” and suppose we have al-
ready assigned the object hcl.n.01 the role AcidSubstance of the Neutralization action
core. According to its definition, there must be the role AlkalineSubstance assigned
to some concept, which is not given in the instruction. In order to infer its role
assignment, we introduce a Skolem constant s that hypothetically fills the missing
role slot of AlkalineSubstance. Since the taxonomy relation of the PRAC dictionary
is included in the PRAC distribution, one can query for the most probable type of s:

is_a(hcl, hel.n.01),
argmax P | is_a(s,c) | AcidSubstance(hcl), | = naoh.n.01,
cel AlkalineSubstance(s)

which means that sodium hydroxide (NaOH) is the most probable alkaline counter-
part for the Neutralization of hydrochloric acid (HCI).

Joint distributions over taxonomies. One of the key features of PRAC is the
ability to perform reasoning about unmodeled concepts, i.e. concepts that have not
been seen during learning. This enables (1) a compact representation of knowledge,
(2) efficient transfer of the learnt knowledge to new situations and (3) filling miss-
ing information pieces in underdetermined action specifications. Figure 5 shows an
example of a conditional distribution over concepts in the PRAC taxonomy for po-
tential Goals of a filling action: From all concepts, specializations of containers gain
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highest probability, which reasonably reflects our intuitions about a typical filling
action. Since PRAC maintains joint distributions over the action roles and the con-
cepts in the PRAC dictionary, we can compute any conditional distribution given any
evidence, which enables context-sensitive completion of actions like in the previous
example. Such out-of-domain inference tasks are implemented using the Fuzzy-
MLN reasoning framework [22].

3 The PRAC Learning and Reasoning System

In this section, we describe in more detail how reasoning is implemented in the
PRAC framework. We first depict the basic ideas of learning and inference in PRAC,
address the issues of learning and present the processing pipeline for performing
inference about interpretations and completions of natural-language instructions.
There are two key paradigms in the PRAC reasoning system.

Learning by generalization. Humans are capable of learning rapidly and flexi-
bly how to use different words in different situations by only having seen very few
examples. They have available an efficient apparatus for generalization, which al-
lows them to abstract away from a very small set of specific instantiations to more
generic patterns of everyday situations that we often encounter in their ‘typical’
form. Consider the example of a ‘filling’ action. From hearing just a few specific
instances of that action verb, e.g., “fill a pot with water” and “fill a cup with milk”,
humans are capable of generalizing to a stereotyped pattern like “fill a container
with a liquid.” This kind of generalization is both powerful and efficent since, on the
one hand, it enables compact representation of knowledge and on the other hand, it
allows to treat new, unseen examples in a meaningful way.

Inference by specialization. Reasoning about new, unseen situations is done by
selecting one or more generic patterns that best fit the new situation and by adapting
them to reality as necessary in order to come up with an instantiated representation
which is as specific and unambiguous as possible. In the example from above, an
instruction like “fill a glass with juice,” for instance, is matched against the generic
“filling’ action and is adapted accordingly by inspecting the conceptual subsumption
of the terms ‘juice’, which corresponds to the liquid being poured and ‘glass’, which
constitutes the goal container of the filling action.

PRAC implements these two paradigms in a coherent probabilistic framework,
which automatically finds abstractions of common situations as illustrated in the
above examples by exploiting the semantic similarities of concepts in the taxonomy
graph. These abstractions reasonably reflect human intuitions of how specific terms
are to be used in certain situations. These principles of abstraction and generaliza-
tion from examples also constitute cornerstones of human cognition [26, 3, 17]. As
an implementational framework, we use Markov logic networks (MLN) [23] to en-
code the knowledge about action cores, their action roles, the PRAC dictionary and
the PRAC instructions, which is a powerful knowledge representation formalism that
combines first-order logic with probability theory.
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3.1 Reasoning

The probabilistic first-order knowledge base in (3) for solving inference problems of
the form arg maxy P(Q| E) has an enormous size. It contains at least the cross prod-
uct of all possible word meanings squared and roles where the set of the possible
word meanings include all possible meanings of the words that occur in the training
data plus the number of their superconcepts in the taxonomy. To make the reasoning
problem feasible we decompose it into three weakly connected subproblems and
generate the probabilistic knowledge bases for each substep independently to keep
the knowledge bases as small as possible: (1) inferring the relevant PRAC, (2) dis-
ambiguation and role assignment and (3) inferring missing information pieces and
refinements of action cores and their associated roles.

Reasoning in PRAC about the most probable interpretation of a natural-language
instruction 1 is implemented by the following multi-step composition of database
transformations by means of probabilistic relational inference:

P ( RAgiVen

arg max P ( R pissing
Ry

arg maxg, argmaxAP(A|I))>7

given
missing

where I = .# (1) is a PRAC instruction representing the syntactic structure of the NL
instruction, A is the action core referred to by the instruction, RAgl.vm are the action

role assignments of A given in /, and Ry, ;. are the action roles of A which do not

have a correspondence in /. Figure 6 depicts the reasoning pipeline of PRAC, which
we will describe in the following in more detail.

1. Parsing: The first step in PRAC reasoning is to analyze the syntactic structure
of the instruction at hand, which yields a PRAC instruction database I according
to (1) containing syntactic relations and the part of speech for each word.

2. Given the words and their part of speech, the possible word meanings are ob-
tained from the PRAC dictionary and the actioncore is identified that is ‘activated’
by I with highest probability:
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o~

A = argmax P (action_core(a,ac) | I, u(I))

3. Given A and its associated roles R from the actioncore library, PRAC performs
simultaneous word sense disambiguation and action role assignment taking into
account the concept taxonomy of the PRAC dictionary:

A’ = arg max P (has_sense(-,-),R | AUIUL)

4. Subsequently, having assigned the action roles for the identified actioncore,
PRAC checks if there is a plan schema in the plan library attached to the ac-
tioncore, which can be parameterized with the inferred roles. If so, the schema is
instantiated with its parameters and sent to the plan executive.

5. If there is no plan schema attached, PRAC incrementally computes refinements
of A’ by alternately solving for the most probable actioncore ac’ ac can be
AchievedBy and its action roles:

A" = argmax P ( achievedBy(a,d') | AUC)
a

A visualization of an exemplary inference process in PRAC and the execution of an

instantiated plan schema can be found in the video accompanying this paper>.

4 Related Work

In recent years, much work has been done in order to make knowledge sources avail-
able to robots, which are indented for human use [27, 24], and to generate robot
plans out of natural-language instructions [16, 25, 10, 20, 27]. Dzifcak ef al. [10]
use a combinatorial categorial grammar for deriving a goal formulation in temporal
logics in order to find an action sequence that achieves this goal. Matuszek et al. [16]
use statistical machine translation techniques to match natural-language navigation
directives against a formal path description language. Others [25, 24] use proba-
bilistic models to derive plans to be executed by a robot. Misra et al. [18] take into
account the context of the environment for grounding objects in an instruction to ob-
jects in the environment. They solve the ambiguity in instructions using an energy
function corresponding to a conditional random field. What these approaches have
in common is that they do not take into account that natural-language instructions
typically are severely underspecified, ambiguous and often not directly executable.
They make what is commonly referred to as the closed-world assumption postulat-
ing that all knowledge about the world is given and complete. Additionally, most
approaches to teach robots by means of natural language are designed to capture
and execute what is specified by an instruction using ‘shallow’ mappings to robot
control, but they are not intended to accumulate more semantic action knowledge
that can be recalled in and adapted to different situations. Artzi et al. [2] and Kim et
al. [15] learn probabilistic context-free grammars for robot navigation tasks. Their

3 https://youtu.be/iA6s7IGqubs
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Generated CRAM Plan

(operate-tap (liquid (some stuff (type water.n.06))) ]
Sattenol_ g, (destination (an object (type kettle.n.01))))
sty

Natural-language input: P

Fill the kettle with water. | F\

Fig. 7 The browser-based webinterface to PRAC on the openEASE cloud robotics platform.

approach is inspired from a more linguistic point of view, where such grammars are
are typically induced from large corpora of text consisting of sequences of naviga-
tional directives.

We take a different approach accounting for the variational complexity and rich-
ness of human-scale manipulation tasks with everyday objects. In PRAC, the result
of a linguistic analysis of an instruction is taken only as evidence in a probabilistic
first-order knowledge base which allows us on the one hand to include any syntactic
characteristics of a sentence as evidence in a query, and on the other hand it enables
tight integration with the robot’s belief state, high-level knowledge base, executive
and perception system, which can provide comprehensive context information, such
as the objects perceived in a scene, for instance. In addition, PRAC makes use of a
rich taxonomy of concepts which allows to transfer the lernt knowledge to new, un-
seen concepts. Our work is not about finding action sequences given a particular
goal, but about how to perform complex everyday activities in presence of partial
and incomplete information. It is inspired by and closely related to Minsky’s [17]
frame representation and partially adapted from the FrameNet [4] specifications of
action verbs but extended and adapted for including knowledge necessary for robot
action execution. Our ultimate goal is a complete robotic agent that is able to suc-
cessfully perform complex manipulation tasks formulated in NL (cmp. [1, 5]). Com-
monly used linguistic corpora of instructions do not account for the behavior that
the analyzed instruction produces. This makes a large-scale corpus-based evalua-
tion of PRAC nearly impossible. Our future work therefore focuses on thoroughly
evaluating PRAC with respect to these points, such as the executability of an action
or whether or not it produces the desired effects and avoids undesired effects by
executing the generated robot plans in a simulated environment (cmp. [11]).

5 Conclusions

In this paper we have shown how interpretation of ambiguous and underdetermined
natural-language instructions can be formulated as the problem of computing the
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most probable complete and unique instruction in an action specific knowledge
base called probabilistic action core (PRAC). Within the PRAC framework, the most
probable complete and unique instruction enables robots to find the most appropri-
ate plan and with the most general refinement of the formal plan parameters given
the NL instruction. To perform this inference the PRAC framework learns a joint
probability distribution over all possible ways in which instructions for a given ac-
tion verb can be formulated. Our PRAC framework provides an attractive alternative
to other instruction interpretation approaches, in particular for the interpretation of
complex manipulation tasks. One important advantage is that PRACs are not lim-
ited to inferring which sequences of actions should be executed but also how the
individual actions are to be executed. A second advantage is that the use of taxo-
nomic reasoning in the PRAC inference results in the inference of the most general
concept refinements of the plan parameters. This generates least commitment calls
of plans that keep maximal flexibility at execution time and avoids the necessar-
ity of grounding symbolic names that are generated in the interpretation process
(symbol grounding problem). Our current implementation comprises a set of 12
PRACs and plan schemata from two application domains, the household/cooking
domain and the domain of conducting chemical experiments, which we are contin-
uously extending. We implemented PRAC as an open-source software framework
which is accessible as a web service on the cloud robotics platform openEASE [7]
(http://www.open-ease.org), shown in Figure 7.
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