
Learning Task Outcome Prediction for Robot Control from Interactive

Environments

Andrei Haidu1

ahaidu@cs.uni-bremen.de

Daniel Kohlsdorf2

dkohlsdorf6@gatech.edu

Michael Beetz1

beetz@cs.uni-bremen.de

Abstract— In order to manage complex tasks such as cooking,
future robots need to be action-aware and posses common sense
knowledge. For example flipping a pancake requires a robot to
know that a spatula has to be under a pancake in order to
succeed. We present a novel approach for the extraction and
learning of action and common sense knowledge, and developed
a game using a robot-simulator with realistic physics for data
acquisition. The game environment is a virtual kitchen, in
which a user has to create a pancake by pouring pancake-
mix on an oven and flipping it using a spatula. The interaction
is done by controlling a virtual robot hand with a 3D input
sensor. We incorporate a realistic fluid simulation in order to
gather appropriate data of the pouring action. Furthermore,
we present a task outcome prediction algorithm for this specific
system and show how to learn a failure model for the pouring
and flipping action.

I. INTRODUCTION

In order for future robots to successfully accomplish more

and more complex manipulation tasks, they are required to be

action-aware. They need to possess a model which discloses

how the effects of their actions depend on the way they are

executed. For example, a robot making pancakes should have

an understanding of the effects of its actions: pouring the

pancake-mix on the oven depends on the position and the

way the container is held, or that the consequence of sliding

a spatula under a pancake may or may not cause damage to

it, depends on the angle and the dynamics of the way it is

pushed. In artificial intelligence these are considered to be

naive physics reasoning capabilities.

Robots having a naive physics understanding of their

manipulation actions are able to perform considerably better.

A robot, knowing that the outcome of pouring depends on

the height of the container and the relative holding position

to the center of the oven, can learn pouring skills much

more efficiently. Such knowledge can guide exploration in

reinforcement learning. Or it can focus imitation learning

on aspects of the demonstration that are known to change

the action effects and thereby decide what to imitate and

what not. Models of different expected aspects and effects

of certain tasks, can also be used to monitor task execution.

Furthermore, the robot can respond to perceptual inputs in a

better informed way.

Unfortunately naive physics and commonsense knowledge

is applied unconsciously and is seldomly communicated

1 are with the Institute for Artificial Intelligence and the TZI (Center for
Computing Technologies), Universität Bremen, Germany.

2 is with the Contextual Computing Group, Georgia Institute of Technol-
ogy, Atlanta, USA.

since it is assumed that everybody possesses it. The result is

that these forms of awareness are difficult to state explicitly.

Fig. 1. Game Setup

Kunze et al.[8] have proposed games with a purpose as

means to equip robots with commonsense and naive physics

knowledge. The basic idea is to design computer games that

include virtual scenes in which virtual manipulation tasks are

to be performed.

Our current gaming setup is depicted in Figure 1. The

system is provided with a sensor infrastructure that allows

interaction with the virtual world by tracking the player’s

hand motion and gestures and mapping them onto the robotic

hand in the game. We tested out two different setups for

the tracking. One with the help of a magnetic sensor based

controller, which returns the position and orientation of the

hand, together with a dataglove for finger joints positioning.

In the second case we used two 3D camera sensors mounted

on a frame which yields the pose and the skeleton of the

tracked hand.

This paper goes beyond the work of Kunze et al. by

supplementing the rigid body simulator with a realistic fluid

model, thus being able to gather more accurate data when

manipulating fluids. Improving the handling of the game,

by making the objects easier to manipulate. For example,

by adding dampened joints to the spatula parts in order to

mimic bending when it is pushed against the surface of the

oven. Furthermore, if such a system is used more widely by a

variety of users, we can use the resulting data to learn models

of task performance and outcome. In that way we have a

2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2014)
September 14-18, 2014, Chicago, IL, USA

978-1-4799-6934-0/14/$31.00 ©2014 IEEE 4389

Fig. 2. System Overview

basis for learning important aspects of a task without stating

action and common sense knowledge explicitly. In particular

we use the hand pose and position trajectory from multiple

gaming sessions in order to build a failure detection system.

The goal is to learn a model that can predict early when a task

is about to fail, based on the current situation. Such failures

can include wrong angles of the spatula or missing the oven

while pouring. Using such a failure detection system a robot

might notice that its current action could lead to a failure

and decide to change its current plan of action accordingly.

In the remainder of the paper we proceed as follows. In

the next section we give a functionality overview of the

system as a whole. In Section III we describe in greater detail

the simulated environment, the various interaction methods

with the game and the augmented fluid model. In section IV

we illustrate how we build a task outcome predictor using

data from the gaming environment and present our empirical

findings in section V. We introduce and discuss related work

in Section VI and finally conclude and present future work

in Section VII.

II. OVERVIEW

The system, is depicted in Figure 2 and it consists of two

main parts. The first part is the cooking game, designed

in a robot-simulator. The simulator uses a physics engine

capable of simulating precise real-time rigid body dynamics,

which is extended with the ability to simulate realistic fluids.

During simulation physics data and interpreted game events

are automatically recorded. The second part is a task outcome

prediction system that uses the data recorded from the game.

We frame the goal of the task outcome prediction system as

a binary classification problem, mapping event data together

with the game’s current state to a prediction for success or

failure. During learning and prediction we use event-based

segmentation to structure the game into episodes such as

“taking the pancake-mix and pouring it on the oven” or

“picking up the spatula and flipping the pancake” and learn

isolated prediction models for each of these episodes.

The “cooking game“ consists of a virtual kitchen equipped

with an oven, a spatula and a container filled with the

pancake-mix fluid. The player’s task is to successfully make

a pancake with the help of a simulated anthropomorphic

robotic hand. The actions involved are grasping the container

filled with the mix, carrying it above the oven and pouring the

right amount of liquid on it in a way that it forms a normal

sized pancake. Eventually, using the spatula, the player needs

to slide it under the pancake, lift and turn it in order to make

the pancake flip it on its opposite side to ’cook’ evenly.

The different manipulation actions can be performed in

numerous approaches, meaning the successes or failures,

and the related effects critically depend on the way they

are executed. For instance, the pouring effects strongly rely

upon the various heights, angles, and tilting speeds of the

container, which can yield different pancake forms and sizes.

Flipping the pancake, again, depends on the chosen height,

speed and rotation axis of the spatula head. In case of

failures, such as spilling the mix, pushing the pancake off

the oven, unsuccessful flipping, or other undesirable effects,

the recorded data is labeled with the failure event. Thus,

by observing game episodes the system can accumulate

information about successes and failures, giving the robot

a faster way to predict the outcome of its action.

In order to learn the task failure detector, we extract the

positions and orientations of the robotic hand, as well as

the first and second derivative as features from the logged

data. Furthermore, we segment the data into episodes using

specific events from the simulation such as “take spatula”

or “drop spatula”. For example, if we were to detect an

error during the flipping action we would only consider the

segment in which the user holds the spatula. During learning

we use Hidden Markov Models to align episode segments to

a discrete set of states. In that way we achieve a temporal

grouping of all frames (pose of hand) in a segment. We then

learn multiple frame level failure detectors using the data

of the states where failure and success outcomes are highly

separable. In that way we can decide for every frame if the

current action will lead to success or failure.

III. SIMULATION ENVIRONMENT

In the following section we describe in detail the game

framework with the types of user interaction and the exten-

sion of the physics engine with a fluid model.

A. The Game Framework

The robot-simulator used to create the cooking game

environment is Gazebo [7], a multi-robot simulator capable

of achieving physically-plausible object interactions using

ODE [16] as its physics engine. Its main components include

4390

the rigid body dynamics and the collision detection engine. In

[4], drawbacks such as poor robustness solver, lack of com-

putational efficiency, weak support for joint-dampening and

friction approximation by linearization were pointed out, and

solved by creating extensions which enabled multi-threaded

execution, added viscous joint dampening and a convex-

optimization solver. With these additions, the computational

speed and precision of the simulation has greatly improved,

allowing the possibility of running complex scenarios in real-

time, such as our cooking game environment.

The interaction between the player and the virtual environ-

ment has been done by tracking the user’s hand motions and

gestures and mapping them in real-time onto a simulated

anthropomorphic robotic hand, namely the DLR/HIT four

finger robotic hand model. For the hand tracking we tested

out two different systems. Firstly, we used Razer Hydra’s

motion sensing game controller, which uses a weak magnetic

field in order to compute the position and orientation of

its sensor with a precision of up to 1 mm and 1 degree.

For finger tracking we used the X-IST dataglove, a motion

capture device which uses bend sensors for each finger joint

to calculate their position. To combine the two devices we

separated the internal sensor from the controller and attached

it to the glove at the wrist position. Using this approach gives

the advantage of consistency and precision in tracking the

hand, however the high price of the dataglove prevents the

possibility of eventually crowdsourcing the game.

To cope with the crowdsourcing idea the second system

tested was done with the 3Gear systems framework, which

enables Kinect-based cameras to reconstruct movements and

gestures of a human hand. The advantages in this case was

the ability to use a popular and affordable sensing device

where the player did not need any additional hardware to

track his hand. However, in some positions the hand rotation

could not be properly tracked, an action critical for the

pouring and flipping task. This led us to currently run our

simulation and gather data using the first alternative.

The control of the virtual robotic hand is implemented

using a PI controller, which computes every timestamp the

required forces and torques needed to be applied on the wrist

in order to move the hand correspondingly to the player’s

one. The communication between the sensors and the game

framework is done via ROS [14] messages.

B. Realistic Fluid Model

One of the main disadvantage in modeling a liquid-

like material using exclusively rigid body dynamics, is the

amount of tweaking required to be done to the physics

engine in order to simulate a model that behaves roughly

as a liquid. Prior to the extension of the physics engine

with the fluid model, we managed to do this by using

numerous solid spheres acting as liquid particles. To avoid

strong elastic collisions between them, we set the material

characteristics of the spheres to a very soft one. Meaning, in

case of collision, spheres can penetrate each other by greatly

dampening the repulsive force acting between them. Another

obstacle was the lack of rolling friction in ODE, to cope with

it, we created a parameterizable controller for each sphere,

which dampened their angular velocity when in contact with

the surface of the oven. Thus giving us a naive control on

the viscosity of the ’liquid’ after it has been poured. The

major disadvantage of using this approach was the inability

of running the simulation in real-time when increasing the

amount of liquid particles (>40).

Fig. 3. Liquid examples

To resolve this issue we implemented a realistic fluid

model based on Monaghan’s [11] Smoothed Particle Hydro-

dynamics (SPH) method. The fluid is composed of multiple

interacting particles, making it an embarrassingly parallel

problem. To take advantage of this we chose an imple-

mentation which enables the computation to be executed

on the GPU as well. The framework we used is Fluidix

[9], a CUDA-powered particle simulation library, providing

a fully dynamic support for interactions between particles

and external objects. By running the parallel code on the

computers graphical unit we had the possibility to simulate

thousands of particles without interfering with the real-time

factor of the rigid body physics engine.

In Figure 3 we illustrate the interaction of the resulting

implemented fluid when poured in a tilted, static cup. We

used three types of fluids with identical particle count, but

different parameters, such as mass-density, stiffness, viscos-

ity, surface tension. In the middle row, fluid number 2, with

blue colored particles, has the standard parameters of water,

such as mass-density of 998.29 kg
m3 , viscosity of 3.5Pa · s,

surface tension 0.0728N
m

. The top fluid, number 1, colored

red, has the viscosity parameter increased compared to the

water, and the lower one, number 3, represented with color

green, has the characteristics of a jelly-like liquid. Having

the simulated model created with formulas which take into

account all the typical parameters of a real fluid, we have

the possibility to accurately reconstruct different liquid types,

which may be required in other simulation setups.

The SPH method we implemented is based on Kelager’s

work [6], where the interacting forces between the particles

are derived from the Navier-Stokes equations for a weakly

4391

compressible and isothermal fluid. The resulting Lagrangian

formulation, yields

ρ
du

dt
= −∇p+ µ∇2u+ f. (1)

where, ρ is the mass-density, u the velocity, and on the

right hand side, −∇p represents the pressure term, µ∇2u the

viscosity, and f the external forces acting on the particles,

such as gravity.

SPH is basically an interpolation method using the concept

of integral representation of any quantity function AI(r), at

a point r in the field, with kernels that approximate Dirac’s

delta function:

AI(r) =

∫
ω

A(r′)W (r − r′, h)dr′, (2)

where ω is the domain, W is a smoothing kernel with

the support radius of h. The equation is then discretized by

replacing the integral operation with a summation, and the

differential element dr′ with the volume V which in turn is

equal to the particle mass mj divided by the mass-density

ρ, yielding

AS(r) =
∑
j

Aj

mj

ρj
W (r − rj , h) (3)

The Gradient ∇ and Laplacian ∇2 of the discretized

quantity function AS(r) can be calculated by taking the first

and second derivative of the smoothing kernel W .

To determine the mass-density acting on a specific particle

i, we use the general SPH formulation (3) to compute the

field. At particle i the mass-density yields

ρi =
∑
j

mjW (ri − rj , h). (4)

The pressure, an internal force emerging only from in-

teractions between the particles, is the main cause for the

repulsive and attractive forces between neighboring particles.

The pressure p at a given particle can be computed with

the ideal gas law equation. However, using it will result in

purely repulsive forces, because of the pressure field which

will always be positive. Desbrun in [3] introduces a modified

version of the ideal gas equation, using an additional rest

density ρ0 to overcome this situation, yielding the pressure

to p = k(ρ−ρ0) , where k is the gas stiffness constant. From

the pressure field, we now can compute the pressure force at

particle i, by using the gradient of the standard formulation

(3) where we replace AS(r) with the pressure term −∇p

from equation (1), resulting

−∇p(ri) = −
∑
j 6=i

pj
mj

ρj
∇W (ri − rj , h). (5)

The viscosity term arises from interaction within the par-

ticles and defines the resistance to flow. The SPH variant can

be computed by introducing it in the standard interpolation

scheme (3), which yields,

µ∇2u(ri) = µ
∑
j 6=i

uj

mj

ρj
∇2W (ri − rj , h). (6)

The smoothing kernels functions (W) for default, the

pressure and the viscosity were used in the form suggested

by Müller in [12].

The surface tension is applied as an external force, which

acts on the exterior of a liquid fluid. It is not present in the

Navier-Stokes equations since it only effects the fluid at its

boundaries. The force induces the particles to shift towards

the liquid, in the direction of the surface normal. The effect

tends to minimize the liquid area by flattening the surface

curvature.

A more comprehensive explanation of SPH, its implemen-

tation and the underlying formulas merely omitted here, can

be found in the work of Kelager [6].

IV. TASK OUTCOME PREDICTION

In the following we will describe how to learn a task

outcome predictor. The goal is to learn a model that can

decide if the current action observed on a frame level will

lead to a success or failure of the task.

We record our data as trajectories from our game simu-

lation. We label each trajectory with success or failure of

the task at the end of the simulation. A trajectory labeled

with success represents pouring the pancake-mix and flipping

the pancake successfully. On the other hand, a trajectory

labeled with failure might occur under different conditions.

For example flipping the pancake off the oven. In the current

implementation we extract the hands position in x, y, z

from the simulation as well as its orientation in angles as

αx, αy, αz at a constant frame rate as our features. We use

the data from 26 successes and 19 flipping off trials.

Our task outcome prediction system is divided into three

stages: Segmentation, Data Preprocessing, Learning and Pre-

diction. In the first step we segment the data using semantic

events. Semantic events provide context such as “we grab

the spatula” or “we touch the oven”. These events divide a

trajectory into meaningful segments. For example the event

“grabbing the spatula” together with “dropping the spatula”

will cut out the segment in which we flip the pancake. In the

data pre-processing step we align a set of example segment

trajectories to a Hidden Markov Model. In that way we

can gather samples for each state in isolation for learning.

From the samples of states that seem promising for good

classification into success and failures we learn multiple

classifiers. During outcome prediction we classify every new

sample using all of the classifiers in the appropriate segment

and use a weighted cumulative count to detect failure as early

as possible.

A. Data Preprocessing and Learning

Since we use human subjects to perform the tasks the

execution timing will change between subjects and also be-

tween trials. Using an alignment first, we account for this so

called “time warp” and force each samples of each trajectory

into one state. Since we assume sequential actions we use

4392

a left to right Hidden Markov Model topology, meaning we

can only stay in a state or transition to its successor. One

can see this alignment step as a temporal clustering into the

states of the HMM. That means that similar frames will be

associated automatically with a particular state. The first step

of the data preprocessing is to align the trajectories against

a common Hidden Markov Model. Therefore, we estimate

its parameters using multiple iterations of Baum Welch

[15] using only examples labeled success. We compute the

most likely state sequence for all examples (success and

failure) using the Viterbi algorithm [15]. One can see the

estimated model as one for the normal non failure case. By

aligning failure and successes against it, we search for states

were large deviations from the normal case occur. These

alignments are used to visually inspect the samples in each

state. We create a scatter plot with the states on the x-axis

and one of the dimensions on the y-axis. Such a plot for our

data is shown in Figure 4. The color of the sample codes

successes and failures.

Fig. 4. We use a 5 state HMM. Under each state we plot all samples in
the αz dimension. Again we plot all failures in red and all successes in
blue. As one can see, state two and three seem promising for classification.
Furthermore, these states are early enough to allow fast failure feedback.

Using this plot we search for early states with “high”

scattering between the two classes. In that way we expect

the failure detectors to trigger early in the case of a failure

and the errors can be detected with high accuracy. After

choosing a promising state, we proceed with learning a

failure detector on the error samples in that state. In order to

account for false triggering we construct the training set such

that we train the failure samples of that state against all other

success samples in that segment. The resulting training set

will consist of way more success examples. The failure class

will be well under-represented. We account for the under

representation by weighting the data set. A byproduct of the

Baum Welch algorithm is the marginal γs(t) probability for

each sample at time t to each state s[15]. Assuming we

choose a state s, we choose the weight for sample t as γs(t),
the probability of sample t belonging to state s. We repeat

the above procedure for multiple states in order to cover

different errors or deviations from the normal successful

behavior. The result of the complete procedure is a set of

binary classifiers voting for success or failure, trained from

different error sources in chosen states.

B. Building the Predictor

The final component of our system is the actual task

outcome predictor. Our goal is to use the binary detectors

form the processing and learning component in order to

decide when a particular state will lead to a failure during

execution. Every sample in a trajectory is classified using all

detectors. The drawback is that this will introduce a lot of

false triggering, since we have no timing information at hand.

One could align each time series against the Hidden Markov

Model from the preprocessing and only classify in the

state the classifier is trained for. However, using the Viterbi

algorithm requires the time series to be known completely.

In an online detection scenario this is not possible. But from

the Hidden Markov Model we can calculate the expected

number of samples we spend in each state and therefore the

expected time we arrive in a certain state s. We calculated the

expected number of samples for each state as the expected

value of the geometric distribution defined by the probability

of leaving a specific state:

E(i) =
1

aij
(7)

with aij being the probability of transitioning from state

i to j. Now the expected number of samples up to that state

is the sum of the expected samples for each preceding state:

Eupto(s) =
s∑ 1

aij
(8)

Since each classifier is estimated for a specific state we

weigh each classification at time t by a Gaussian centered

around Eupto(s). Given N classifiers c1...cN trained on

specific state s1...sN and a threshold th we trigger a failure

condition at time t when:

N∑
i=1

ci(t) ∗N(t|Eupto(si), σ
2) > th (9)

In other words we apply a threshold to a weighted sum of

classifiers, while the weight is the likelihood of being close

to the state the classifier was trained in.

In order to account for the performance of each classifier

in isolation, we introduce another weight in the system

representing the classification accuracy during performance

acci. And the final detector is given by:

∑N

i=1
accici(t) ∗N(t|Eupto(si), σ

2)∑N

i=1
acci

> th (10)

4393

V. EXPERIMENTS

We will describe our experimental setup and results for

the different parts of the task outcome prediction system

on data from the Gazebo pancake flipping scenario. As

stated above we gathered 26 successful executions of the

task and 19 failures by flipping off the pancake. For all the

experiments we use a 5 state Hidden Markov Model for our

data preprocessing algorithm. We estimated the threshold for

the detectors empirically as 0.00003. Our implementation

uses the Weka Toolkit for training the frame based detectors.

Fig. 5. Trajectory visualization with failure detection. The yellow trajectory
shows a successful pouring. The blue trajectory shows flipping the pancake
off the oven. The red marker shows the place where our detector found the
error.

In our classification experiments we visualize the data as

described above. From the visualization we decided to use

data from state one, three and four. In order to get multiple

votes for each error source we train multiple classifiers for

each error source of the states. In order to evaluate which

classifiers to use, we use the Weka toolkit and empirically

try different classifiers on weighted data sets. We obtain

the weights using the data preprocessing methods described

above. In state one we found training a decision tree using

the J48 algorithm to perform well and observe an accuracy

of 98%. In state two we perform the same training for

a decision tree (accuracy 99%) and a naive Bayes model

(accuracy 96%). In state three we train a random forest with

accuracy 99% and a decision tree again (accuracy 94%). In

that way we have five detectors voting for success or failure.

When applying our detectors to the trajectory data using the

method described above we observe an accuracy of 71%. For

our threshold we have six false positives and we miss seven

errors. The confusion matrix is shown in Table I.

Given its accuracy our model is in no way capable of being

the only source of success or error decision. However, we

argue that it is a sufficient model to support such decisions.

The two errors namely “false triggering” and “missing an

error” can be resolved on other stages of a robot’s motor

control. The false triggering results in the robot replanning

its action or backtracking. If these conditions do not happen

very often, it will not effect the robot’s performance. Missing

an error can be handled when the robot is actually confronted

with an invalid state.

success fail

success 20 6

fail 7 12

TABLE I

THE RESULTS OF OUR PREDICTION EXPERIMENTS.

In our experiments we learned multiple decision trees us-

ing the J48 algorithm. This algorithm chooses node ordering

using the information theory measure “Information Gain”.

In simple words, the attribute that will help the classification

most, is picked first and will represent the root node. In our

experiments the attributes we observed most in the higher

levels were angles and velocities in position and posture.

So the speed of the performance is important as well as the

posture of the spatula. We think this indicates that the system

is capable of learning simple physical reasoning capabilities.

Choosing the wrong angle while sliding under a pancake will

lead to a push off in real life as well, and performing the task

too fast also. So the learned models meet our expectation in

regard to the real world properties of the problem. In Figure

5 we show a successful pouring and an unsuccessful flipping

event as well as the result of our detector. As one can see

the error got detected early on when holding the spatula.

Furthermore the spot marked is when the spatula touches

the oven and the angle for the following action is decided.

So the detector made the decision early based on the angle

of the spatula.

VI. RELATED WORK

Games with a purpose [18] have also been used for learn-

ing, however most of them used for labeling pictures over

the internet, providing meaningful and accurate labels, or

locating objects in them. In the work of [2] an approach using

markerless tracking of human motion is presented. In our

case we used a magnetic sensor attached to a dataglove or 3D

cameras for hand tracking. Surgeons successfully managed

to practice surgical procedures with the help of physics-based

simulators and using haptic devices for controllers [10].

Hidden Markov Models are widely used in modeling

sequence data such as speech [15]. Aligning multiple se-

quences against a Hidden Markov Model’s states using

multiple iterations of Bau Welch and Viterbi alignment

is a standard procedure in Bio Informatics [5]. The goal

of such an alignment is to group consecutive parts of a

sequence. The Baum Welch algorithm will reestimate the

observation distributions and the transition probabilities of

a Hidden Markov Model such that the probability of the

model generating provided training data is maximized. Given

such a model we can use the Viterbi algorithm to find

the most likely path through the Hidden Markov Model.

That path provides an alignment against the states of the

Hidden Markov Model. The frame level detectors we use

are standard algorithms too. We chose “cheap” detectors

such as decision trees, small random forests and naive Bayes

in order to keep the workload of Task Outcome Prediction

small. Furthermore these algorithms have shown to give

good classification results in a variety of domains despite

4394

their simplicity. Another reason for using decision trees in

particular is that one can learn about the importance (in a

information theory sense) of attributes in the data by looking

at generated trees. For a deeper introduction to Decision

Tree Learning we recommend reading any introduction to

Machine Learning [13].

VII. DISCUSSION AND CONCLUSIONS

We presented a system to leverage naive physics knowl-

edge and action models from computer games. Therefore,

we developed a user controlled interactive environment that

simulates creating of a pancake. The simulation supports

fluid dynamics to build a realistic environment for data

collection. Furthermore, we introduced a novel task outcome

prediction algorithm using the temporal structure of our data.

In our experiments we showed how event based segmenta-

tion, Hidden Markov Models and simple classifiers are not

only capable of performing task outcome prediction but also

showing meaningful detection.

In future work we are planning to implement an im-

proved version of the fluid simulation by applying the

Predictive-corrective incompressible SPH (PCISPH) method

[17], which has the advantages of larger simulation time steps

with low computational costs. Also adding new character-

istics to the fluid, such as cohesion and friction between

the particles [1], allowing us to simulate granular materials,

such as salt or sugar. We are planning to improve the user

interaction by trying out new systems and devices to track

the hand and fingers of the player, also to output the visuals

using stereo vision, in order to have a depth concept of the

working environment.

REFERENCES

[1] Iván Alduán and Miguel A. Otaduy. SPH granular flow with friction

and cohesion. SCA ’11. ACM, New York, NY, USA, 2011.

[2] Michael Beetz, Jan Bandouch, Dominik Jain, and Moritz Tenorth.
Towards Automated Models of Activities of Daily Life. In First

International Symposium on Quality of Life Technology – Intelligent

Systems for Better Living, Pittsburgh, Pennsylvania USA, 2009.

[3] M. Desbrun and M.-P. Cani. A new paradigm for animating highly
deformable bodies. In Computer Animation and Simulation, pages
61–76, 1996.

[4] E. Drumwright, J. Hsu, N. Koenig, and D. Shell. Extending Open

Dynamics Engine for Robotics Simulation. Simulation, Modeling, and
Programming for Autonomous Robots. Springer, 2010.

[5] R. Durbin. Biological Sequence Analysis: Probabilistic Models of

Proteins and Nucleic Acids. Cambridge University Press, 1998.

[6] Micky Kelager. Lagrangian fluid dynamics using smoothed particle
hydrodynamics, 2006.

[7] N. Koenig and A. Howard. Design and use paradigms for gazebo,
an open-source multi-robot simulator. In: Proc. of IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS), pages
2149–2154, 2004.

[8] L. Kunze, A. Haidu, and M. Beetz. Acquiring task models for imitation
learning through games with a purpose. International Conference on

Intelligent Robots and Systems (IROS), 2013.

[9] Adam MacDonald. Fluidix particle simulation api. nVidia GPU

Technology Conference, 2013.

[10] A. Maciel, G. Sankaranarayanan, T. Halic, V. Arikatla, Z. Lu, and
S. De. Surgical model-view-controller simulation software framework
for local and collaborative applications. International Journal of

Computer Assisted Radiology and Surgery, 2011.

[11] J.J. Monaghan. Smoothed particle hydrodynamics. Annual Review of

Astronomy and Astrophysics, (30):543–574, 1992.

[12] M. Müller, D. Charypar, and M Gross. Particle-based fluid simulation
for interactive applications. Proceedings of 2003 ACM SIGGRAPH

Symposium on Computer Animation, pages 154–159, 2003.
[13] Kevin P Murphy. Machine learning: a probabilistic perspective.

Cambridge, MA, 2012.
[14] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,

E. Berger, R. Wheeler, and A. Ng. Ros: an open-source robot operating
system. ICRA Workshop on Open Source Software, 2009.

[15] L. Rabiner. A tutorial on hidden markov models and selected applica-
tions in speech recognition. Proceedings of the IEEE, 77(2):257–286,
1989.

[16] Russel Smith. Ode: Open dynamics engine.
[17] B. Solenthaler and R. Pajarola. Predictive-corrective incompressible

sph. ACM Trans. Graph., 28(3):40:1–40:6, 2009.
[18] Luis von Ahn and Laura Dabbish. Designing games with a purpose.

Commun. ACM, 51(8):58–67, August 2008.

4395

